Journal of Materials Science

, Volume 32, Issue 22, pp 6001–6008 | Cite as

Room temperature synthesis of crystalline metal oxides

  • M Gopal
  • W. J Moberly Chan
  • L. C De Jonghe


Crystalline titanium dioxide powders have been synthesized as either rutile or anatase from aqueous solutions at low temperatures (T≤100°C) and atmospheric pressure. First, a sol is prepared by the hydrolysis of a titanium alkoxide in an acidic solution. The sol is subsequently heated at different rates to produce the different crystalline phases of titanium dioxide. Powder characterization was carried out using X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscopy. In general, the precipitate size was observed to be between 50 and 100 nm. Possible mechanisms involved in determining the crystal variants are discussed.


Rutile Alkoxide Brookite Titanium Isopropoxide Titanium Alkoxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ceramic Industry 140 (1993) 37.Google Scholar
  2. 2.
    A. KAY and M. GRATZEL, J. Phys. Chem. 97 (1993) 6272.CrossRefGoogle Scholar
  3. 3.
    M. A. ANDERSON, M. J. GIESELMANN and Q. XU, J. Membrane Sci. 39 (1988) 243.CrossRefGoogle Scholar
  4. 4.
    K.-N. P. KUMAR, K. KEIZER, A. J. BURGGRAAF, T. OKUBO and H. NAGAMOTO, J. Mater. Chem. 3 (1993) 923.CrossRefGoogle Scholar
  5. 5.
    A. KATO, Y. TAKESHITA and Y. KATATAE, Mat. Res. Soc. Symp. Proc. 155 (1989) 13.CrossRefGoogle Scholar
  6. 6.
    J. S. REED, “Introduction to the principles of ceramic processing“ (John Wiley, New York, 1988) p. 41.Google Scholar
  7. 7.
    M. KIYAMA, T. AKITA, Y. TSUSUMI and T. TAKADA, Chem. Lett. (1972) 21.Google Scholar
  8. 8.
    “Encyclopedia of chemical technology”, vol. 23, edited by H. F. Mark, D. F. Othmer, C. G. Overberger and G. T. Seaborg (John Wiley, New York, 1983) p. 139.Google Scholar
  9. 9.
    M. VISCA and E. MATIJEVIC, J. Colloid Interface Sci. 68 (1979) 308.CrossRefGoogle Scholar
  10. 10.
    E. MATIJEVIC, M. BUDNIK and L. MEITES, ibid. 61 (1977) 302.Google Scholar
  11. 11.
    E. A. BARRINGER and H. K. BOWEN, J. Amer. Ceram. Soc. 65 (1982) C199.CrossRefGoogle Scholar
  12. 12.
    L. I. BEKKERMAN, I. P. DOBROVOL'SKII and A. A. IVAKIN, Russ. J. Inorg. Chem. 21 (1976) 233.Google Scholar
  13. 13.
    C. J. BRINKER and G. W. SCHERER “Sol–gel science” (Academic Press, Boston, 1990) p. 21.Google Scholar
  14. 14.
    J. LIVAGE, M. HENRY and C. SANCHEZ, Prog. Solid State Chem. 18 (1988) 259.CrossRefGoogle Scholar
  15. 15.
    B. E. YOLDAS, J. Non-Cryst. Solids 63 (1984) 145.CrossRefGoogle Scholar
  16. 16.
    Idem., J. Mater. Sci. 14 (1979) 1843.CrossRefGoogle Scholar
  17. 17.
    Idem., ibid. 21 (1986) 1087.Google Scholar
  18. 18.
    B. D. FABES and D. R. UHLMANN, in “Innovations in materials processing using aqueous, colloid and surface chemistry“, edited by F. M. Doyle, S. Raghavan, P. Somasundaran and G. W. Warren (TMS, Warrendale, PA, 1988) p. 127.Google Scholar
  19. 19.
    K. D. KEEFER, in “Better ceramics through chemistry”, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich, (Materials Research Society, Pittsburgh, PA, 1984) p. 15.Google Scholar
  20. 20.
    A. NAZERI and M. KAHN, Amer. Ceram. Soc. Bull. 72 (1993) 59.Google Scholar
  21. 21.
    B. E. YOLDAS, ibid. 54 (1975) 286.Google Scholar
  22. 22.
    “Phase diagrams for ceramists”, edited by E. M. Levine and H. F. McMurdie (American Ceramic Society, Westerville, OH, 1975) Fig. 4258.Google Scholar
  23. 23.
    A. NAVROTSKY and O. J. KLEPPA, J. Amer. Ceram. Soc. 50 (1967) 626.CrossRefGoogle Scholar
  24. 24.
    ATOMS softwareGoogle Scholar
  25. 25.
    R. C. WEAST (ed.), “Handbook of chemistry and physics” (CRC Press, Boca Raton, FL, 1984) B-154.Google Scholar
  26. 26.
    T. ZOLTAI and J. H. STOUT, “Mineralogy: concepts and principles” (Burgess Publishing Co., Minneapolis, MN, 1984) p. 411.Google Scholar
  27. 27.
    J. LIVAGE and M. HENRY, in “Ultrastructure processing of advanced ceramics”, edited by J. D. Mackenzie and D. R. Ulrich (John Wiley, New York, 1988) p. 187.Google Scholar
  28. 28.
    J. R. BARTLETT and J. L. WOOLFREY, in “Chemical processing of advanced materials”, edited by L. L. Hench and J. K. West (John Wiley, New York, 1992) p. 247.Google Scholar
  29. 29.
    Q. J. WANG, S. C. MOSS, M. L. SHALZ, A. M. GLAESER, H. W. ZANDBERGEN and P. ZSCHACK, in “Physics and chemistry of finite systems: from clusters to crystals”, Vol. II, edited by P. Jena, S. N. Khanna and B. K. Rao (Kluwer Academic Publishers, Boston, 1992) p. 1287.CrossRefGoogle Scholar
  30. 30.
    L. H. EDELSON and A. GLAESER, J. Amer. Ceram. Soc. 71 (1988) 225.CrossRefGoogle Scholar
  31. 31.
    B. O'REGAN, J. MOSER, M. ANDERSON and M. GRÄTZEL, J. Phys. Chem. 94 (1990) 8720.CrossRefGoogle Scholar
  32. 32.
    L. PAULING, J. Amer. Chem. Soc. 51 (1929) 1010.CrossRefGoogle Scholar
  33. 33.
    P. MEAKIN, in “Kinetics of aggregation and gelation”, edited by F. Family and D. P. Landau (North Holland Physics Publishing, New York, 1984) p. 91.CrossRefGoogle Scholar
  34. 34.
    P. PIERANSKI, Contemp. Phys. 24 (1983) 25.CrossRefGoogle Scholar
  35. 35.
    E. A. HAUSER and D. S. LE BEAU, J. Phys. Chem. 42 (1938) 961.CrossRefGoogle Scholar
  36. 36.
    J. H. L. WATSON, W. HELLER and W. WOJTOWICZ, Science 109 (1949) 274.CrossRefGoogle Scholar
  37. 37.
    W. HELLER, in “Polymer colloids II”, edited by R. M. Fitch, (Plenum Press, New York, 1980) 153.CrossRefGoogle Scholar
  38. 38.
    A. BLEIR and R. M. CANNON in “Better ceramics through chemistry II”, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich (Materials Research Society, Pittsburgh, PA, 1986) p. 71.Google Scholar
  39. 39.
    M. GOPAL, M.S. thesis, University of California at Berkeley, (1994).Google Scholar
  40. 40.
    E. MATIJEVIC, Acc. Chem. Res. 14 (1981) 22.CrossRefGoogle Scholar
  41. 41.
    T. IIDA, K. YAMAOKA, S. NOZIRI and H. NOZAKI, Kogyo Kagaku Zasshi 69 (1966) A 118 (English abstract).CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • M Gopal
    • 1
  • W. J Moberly Chan
    • 1
  • L. C De Jonghe
    • 1
  1. 1.Lawrence Berkeley National LaboratoryCenter for Advanced MaterialsBerkeleyUSA

Personalised recommendations