Journal of Statistical Physics

, Volume 98, Issue 1–2, pp 77–102

Hamiltonian Derivation of a Detailed Fluctuation Theorem

  • C. Jarzynski
Article

Abstract

We analyze the microscopic evolution of a system undergoing a far-from-equilibrium thermodynamic process. Explicitly accounting for the degrees of freedom of participating heat reservoirs, we derive a hybrid result, similar in form to both the fluctuation theorem and a statement of detailed balance. We relate this result to the steady-state fluctuation theorem and to a free energy relation valid far from equilibrium.

fluctuation theorem irreversible processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. Lett. 71:2401 (1993).Google Scholar
  2. 2.
    D. J. Evans and D. J. Searles, Phys. Rev. E 50:1645 (1994); Phys. Rev. E 52:5839 (1995); Phys. Rev. E 53:5808 (1996).Google Scholar
  3. 3.
    G. Gallavotti and E. G. D. Cohen, J. Stat. Phys. 80:931 (1995); Phys. Rev. Lett. 74:2694 (1995).Google Scholar
  4. 4.
    G. Gallavotti, Phys. Rev. Lett. 77:4334 (1996).Google Scholar
  5. 5.
    E. G. D. Cohen, Physica A 240:43 (1997).Google Scholar
  6. 6.
    F. Bonetto, G. Gallavotti, and P. L. Garrido, Physica D 105:226 (1997).Google Scholar
  7. 7.
    G. Gallavotti, Chaos 8:384 (1998).Google Scholar
  8. 8.
    G. Gallavotti, Physica A 263:39 (1999).Google Scholar
  9. 9.
    F. Bonetto, N. I. Chernov, and J. L. Lebowitz, Chaos 8:823 (1998).Google Scholar
  10. 10.
    D. Ruelle, J. Stat. Phys. 95:393 (1999).Google Scholar
  11. 11.
    G. Ayton, D. J. Evans, and D. J. Searles, cond-mat/9901256.Google Scholar
  12. 12.
    D. J. Searles and D. J. Evans, cond-mat/9902021.Google Scholar
  13. 13.
    D. J. Searles and D. J. Evans, cond-mat/9906002.Google Scholar
  14. 14.
    E. G. D. Cohen and G. Gallavotti, J. Stat. Phys. 96:1343 (1999).Google Scholar
  15. 15.
    J. Kurchan, J. Phys. A 31:3719 (1998).Google Scholar
  16. 16.
    J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95:333 (1999).Google Scholar
  17. 17.
    D. J. Searles and D. J. Evans, Phys. Rev. E 60:159 (1999).Google Scholar
  18. 18.
    G. E. Crooks, Phys. Rev. E 60:2721 (1999); also “Path Ensemble Averages in Systems Driven Far From Equilibrium,” unpublished preprint.Google Scholar
  19. 19.
    C. Maes, J. Stat. Phys. 95:367 (1999).Google Scholar
  20. 20.
    C. Maes, F. Redig, and A. Van Moffaert, mp-arc/99-209.Google Scholar
  21. 21.
    C. Jarzynski, Phys. Rev. Lett. 78:2690 (1997).Google Scholar
  22. 22.
    C. Jarzynski, Phys. Rev. E 56:5018 (1997).Google Scholar
  23. 23.
    G. E. Crooks, J. Stat. Phys. 90:1481 (1998).Google Scholar
  24. 24.
    R. M. Neal, “Annealed Importance Sampling,” Technical Report No. 9805 (revised), Dept. of Statistics, Toronto (1998).Google Scholar
  25. 25.
    C. Jarzynski, Acta Phys. Pol. B 29:1609 (1998).Google Scholar
  26. 26.
    C. Jarzynski, J. Stat. Phys. 96:415 (1999).Google Scholar
  27. 27.
    T. Hatano, Phys. Rev. E 60:R5017 (1999).Google Scholar
  28. 28.
    G. N. Bochkov and Yu. E. Kuzovlev, Zh. Eksp. Teor. Fiz. 72:238 (1977) [Sov. Phys.__ JETP 45:125 (1977)].Google Scholar
  29. 29.
    G. N. Bochkov and Yu. E. Kuzovlev, Physica A 106:443 (1981), Physica A 106:480 (1981).Google Scholar
  30. 30.
    J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, J. Stat. Phys. 95:305 (1999).Google Scholar
  31. 31.
    Y. Oono, Prog. Theor. Phys. Suppl. 99:165 (1989), and references therein.Google Scholar
  32. 32.
    S. Nose, J. Chem. Phys. 81:511 (1984); W. G. Hoover, Phys. Rev. A 31:1695 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • C. Jarzynski
    • 1
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosNew Mexico

Personalised recommendations