Advertisement

Journal of Materials Science

, Volume 32, Issue 21, pp 5661–5667 | Cite as

Morphology of a deformed rubber toughened poly(methyl methacrylate) film under tensile strain

  • C HE
  • A. M DONALD
Article

Abstract

The morphology of rubber toughened poly(methyl methacrylate) (PMMA) films was studied during deformation using environmental scanning electron microscopy (ESEM) combined with real time small angle X-ray scattering (SAXS). These two methods provide two different approaches to an in situ study of the morphology of the deforming polymer film. The ESEM study shows that the polymer film exhibits multiple craze-like streaks under tensile strain. Every streak runs through several apparently cavitated rubber particles. Further study by SAXS reveals that these streaks are not crazes. Instead they appear to be lines of cavitated rubber particles which form a particular type of dilatation band known as a “croid”. The ESEM study also shows that with increasing strain the rubber particles gradually increase in size, and that both the number and size of the croids increase. Finally the croids evolve into cracks just before the breakdown of the sample.

Keywords

Cavitation Environmental Scanning Electron Microscopy Tensile Axis Rubber Particle PMMA Core 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. B. BUCKNALL, “Toughened plastics”, (Applied Science, London, 1977).CrossRefGoogle Scholar
  2. 2.
    H-J SUE, J. Mater. Sci. 27 (1992) 3098.CrossRefGoogle Scholar
  3. 3.
    A. LAZZERI and C. B. BUCKNALL, ibid 28 (1993) 6799.CrossRefGoogle Scholar
  4. 4.
    Idem, Polym. 36 (1995) 2895.CrossRefGoogle Scholar
  5. 5.
    A, M. DONALD and E. J. KRAMER, J. Mater. Sci. 17 (1982) 1765.CrossRefGoogle Scholar
  6. 6.
    F. HAAF, H. BREUER and J. STABENOW, J. Macromol. Sci. B14 (1977) 387.Google Scholar
  7. 7.
    B. D. LAUTERWASSER and E. J. KRAMER, Phil. Mag. A39 (1979) 369.Google Scholar
  8. 8.
    D. G. GILBERT and A. M. DONALD, J. Mater. Sci. 21 (1986) 1819.CrossRefGoogle Scholar
  9. 9.
    G. D. DANILATOS, Microsc. Res. Tech. 25 (1993) 529.CrossRefGoogle Scholar
  10. 10.
    Idem, Adv. Elec. Electron Phys. 78 (1990) 1.CrossRefGoogle Scholar
  11. 11.
    C. HE, A. M. DONALD, M. F. BUTLER and O. DIAT, J. Macromol Sci. Symposium, 112 (1996) 115.CrossRefGoogle Scholar
  12. 12.
    R. A. BUBECK, D. J. BUCKLEY, E. J. KRAMER and H. R. BROWN, J. Mater. Sci. 26 (1991) 6249.CrossRefGoogle Scholar
  13. 13.
    R. E. CAMERON and A. M. DONALD, J. Microsc. 173 (1994) 227.CrossRefGoogle Scholar
  14. 14.
    C. HE, A. M. DONALD and M. F. BUTLER, submitted to Macromols.Google Scholar
  15. 15.
    P. MEREDITH and A. M. DONALD, J. Microsc. 181 (1996) 23.CrossRefGoogle Scholar
  16. 16.
    H. R. BROWN and E. J. KRAMER, J. Macromol. Sci.-Phys. 19B (1981) 487.CrossRefGoogle Scholar
  17. 17.
    C. HE, A. M. DONALD, M. F. BUTLER and O. DIAT, Polymerin press.Google Scholar
  18. 18.
    C. HE and A. M. DONALD, Langmuir 12 (1996) 6250.CrossRefGoogle Scholar
  19. 19.
    A. M. DONALD and E. J. KRAMER, J. Mater. Sci. 16 (1981) 2967.CrossRefGoogle Scholar
  20. 20.
    R. SCHIRRER, C. FOND and A. LOBBRECHT, ibid 31 (1996) 6409.CrossRefGoogle Scholar
  21. 21.
    I. FRASER and R. MOORE, Private communication.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • C HE
    • 1
  • A. M DONALD
    • 1
  1. 1.Polymer and Colloids Group, Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations