Journal of Statistical Physics

, Volume 99, Issue 1–2, pp 219–261 | Cite as

Diffraction of Random Tilings: Some Rigorous Results

  • Michael Baake
  • Moritz Höffe


The diffraction of stochastic point sets, both Bernoulli and Markov, and of random tilings with crystallographic symmetries is investigated in rigorous terms. In particular, we derive the diffraction spectrum of 1D random tilings, of stochastic product tilings built from cuboids, and of planar random tilings based on solvable dimer models, augmented by a brief outline of the diffraction from the classical 2D Ising lattice gas. We also give a summary of the measure theoretic approach to mathematical diffraction theory which underlies the unique decomposition of the diffraction spectrum into its pure point, singular continuous, and absolutely continuous parts.

diffraction theory stochastic point sets random tilings quasicrystals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Argabright and J. Gil de Lamadrid, Fourier Analysis of Unbounded Measures on Locally Compact Abelian Groups, Memoirs of the AMS, Vol. 145 (AMS, Providence, RI, 1974).Google Scholar
  2. 2.
    J. Arsac, Fourier Transforms and the Theory of Distributions (Prentice Hall, Englewood Cliffs, 1966).Google Scholar
  3. 3.
    M. Baake, A guide to mathematical quasicrystals, in Quasicrystals, J.-B. Suck, M. Schreiber, and P. Häuβler, eds. (Springer, Berlin, 2000), in press; math-ph/9901014.Google Scholar
  4. 4.
    M. Baake and R. V. Moody, Diffractive point sets with entropy, J. Phys. A 31:9023–9039 (1998).Google Scholar
  5. 5.
    M. Baake, R. V. Moody, and P. A. B. Pleasants, Diffraction from visible lattice points and kth power free integers, Discr. Math., in press; math.MG/9906132.Google Scholar
  6. 6.
    M. Baake, R. V. Moody, and M. Schlottmann, Limit-(quasi)periodic point sets as quasicrystals with p-adic internal spaces, J. Phys. A 31:5755–5765 (1998).Google Scholar
  7. 7.
    H. Bauer, Maβ-und Integrationstheorie, 2nd ed. (de Gruyter, Berlin, 1992).Google Scholar
  8. 8.
    S. K. Berberian, Measure and Integration (Macmillan, New York, 1965).Google Scholar
  9. 9.
    T. J. I'A. Bromwich, An Introduction to the Theory of Infinite Series, 2nd rev. ed. (Macmillan, London, 1965); reprint (Chelsea, New York, 1991).Google Scholar
  10. 10.
    R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances, Ann. Prob. 21:1329–1371 (1993).Google Scholar
  11. 11.
    J. W. S. Cassels, An Introduction to Diophantine Approximation (Cambridge University Press, Cambridge, 1957).Google Scholar
  12. 12.
    J. M. Cowley, Diffraction Physics, 3rd ed. (North-Holland, Amsterdam, 1995).Google Scholar
  13. 13.
    L. Danzer, A family of 3D-spacefillers not permitting any periodic or quasiperiodic tiling, in Aperiodic '94, G. Chapuis and W. Paciorek, eds. (World Scientific, Singapore, 1995), pp. 11–17.Google Scholar
  14. 14.
    J. Dieudonné, Treatise of Analysis, Vol. II (Academic Press, New York, 1970).Google Scholar
  15. 15.
    S. Dworkin, Spectral theory and X-ray diffraction, J. Math. Phys. 34:2965–2967 (1993).Google Scholar
  16. 16.
    V. Elser, Comment on: Quasicrystals—A New Class of Ordered Structures, Phys. Rev. Lett. 54:1730 (1985).Google Scholar
  17. 17.
    W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd ed., rev. printing (Wiley, New York, 1970); Vol. 2, 2nd ed. (Wiley, New York, 1991).Google Scholar
  18. 18.
    M. E. Fisher and J. Stephenson, Statistical mechanics of dimers on a plane lattice. II. Dimer correlations and monomers, Phys. Rev. 132:1411–1431 (1963).Google Scholar
  19. 19.
    H.-O. Georgii, Gibbs Measures and Phase Transitions (de Gruyter, Berlin, 1988).Google Scholar
  20. 20.
    A. Guinier, X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies (Freeman, San Francisco, 1963); reprinted as Dover (New York, 1994).Google Scholar
  21. 21.
    E. R. Hansen, A Table of Series and Products (Prentice Hall, Englewood Cliffs, 1975).Google Scholar
  22. 22.
    O. J. Heilmann and E. H. Lieb, Lattice models for liquid crystals, J. Stat. Phys. 20:679–693.Google Scholar
  23. 23.
    C. L. Henley, Random tiling models, in Quasicrystals—The State of the Art, D. P. DiVincenzo and P. J. Steinhardt, eds. (World Scientific, Singapore, 1991), pp. 429–524; 2nd ed. in preparation.Google Scholar
  24. 24.
    H. Heuser, Funktionalanalysis, 2nd ed. (Teubner, Stuttgart, 1986).Google Scholar
  25. 25.
    M. Höffe, Diffraction of the dart-rhombus random tiling, to appear in Mat. Science Eng. A, in press; math-ph/9911014.Google Scholar
  26. 26.
    A. Hof, On diffraction by aperiodic structures, Commun. Math. Phys. 169:25–43 (1995).Google Scholar
  27. 27.
    A. Hof, Diffraction by aperiodic structures, in The Mathematics of Long-Range Aperiodic Order, R. V. Moody, ed., NATO ASI Series C 489 (Kluwer, Dordrecht, 1997), pp. 239–268.Google Scholar
  28. 28.
    A. Hof, Diffraction by aperiodic structures at high temperatures, J. Phys. A 28:57–62 (1995).Google Scholar
  29. 29.
    A. Hof, On scaling in relation to singular spectra, Commun. Math. Phys. 184:567–577 (1997).Google Scholar
  30. 30.
    R. B. Israel, Convexity in the Theory of Lattice Gases (Princeton University Press, Princeton, 1979).Google Scholar
  31. 31.
    H. Jagodzinski and F. Frey, Disorder diffuse scattering of X-rays and neutrons, in International Tables of Crystallography B, U. Shmueli, ed., 2nd ed. (Kluwer, Dordrecht, 1996), pp. 392–433.Google Scholar
  32. 32.
    M. V. Jarić and D. R. Nelson, Diffuse scattering from quasicrystals, Phys. Rev. B 37:4458–4472 (1988).Google Scholar
  33. 33.
    D. Joseph, private communication (1998).Google Scholar
  34. 34.
    P. W. Kasteleyn, The statistics of dimers on a lattice, Physica 27:1209–1225 (1961).Google Scholar
  35. 35.
    P. W. Kasteleyn, Dimer statistics and phase transitions, J. Math. Phys. 4:287–293 (1963).Google Scholar
  36. 36.
    G. Keller, Equilibrium States in Ergodic Theory, LMSST 42 (Cambridge University Press, Cambridge, 1998).Google Scholar
  37. 37.
    R. Kenyon, Local statistics of lattice dimers, Ann. Inst. H. Poincaré Prob. 33:591–618 (1997).Google Scholar
  38. 38.
    R. Kenyon, The planar dimer model with boundary: a survey, preprint (1998); to appear in Directions in Mathematical Quasicrystals, M. Baake and R. V. Moody, eds., CRM Monograph Series (AMS, Providence, RI, 2000), in press.Google Scholar
  39. 39.
    R. Kindermann and J. L. Snell, Markov Random Fields and their Applications, Contemp. Mathematics, Vol. 1 (AMS, Providence, RI, 1980).Google Scholar
  40. 40.
    J. C. Lagarias and P. A. B. Pleasants, Repetitive Delone sets and quasicrystals, to appear in Erg. Th. & Dyn. Syst.; math.DS/9909033.Google Scholar
  41. 41.
    W. Ledermann, Asymptotic formulae relating to the physical theory of crystals, Proc. Royal Soc. London A 182:362–377 (1943–1944).Google Scholar
  42. 42.
    B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model (Harvard University Press, Cambridge, MA, 1973).Google Scholar
  43. 43.
    E. W. Montroll, Lattice Statistics, in Applied Combinatorial Mathematics, E. F. Beckenbach, ed. (John Wiley, New York, 1964), pp. 96–143.Google Scholar
  44. 44.
    K. Petersen, Ergodic Theory (Cambridge University Press, Cambridge, 1983).Google Scholar
  45. 45.
    M. Queffélec, Spectral study of automatic and substitutive sequences, in Beyond Quasicrystals, F. Axel and D. Gratias, eds. (Springer, Berlin, 1995), pp. 369–414.Google Scholar
  46. 46.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, 2nd ed. (Academic Press, San Diego, 1980).Google Scholar
  47. 47.
    C. Richard, M. Höffe, J. Hermisson, and M. Baake, Random tilings—concepts and examples, J. Phys. A 31:6385–6408 (1998).Google Scholar
  48. 48.
    W. Rudin, Fourier Analysis on Groups (Wiley Interscience, New York, 1962).Google Scholar
  49. 49.
    W. Rudin, Functional Analysis, 2nd ed. (McGraw-Hill, New York, 1991).Google Scholar
  50. 50.
    D. Ruelle, Statistical Mechanics: Rigorous Results (Addison Wesley, Redwood City, 1969).Google Scholar
  51. 51.
    D. Ruelle, Do turbulent crystals exist?, Physica 113A:619–623 (1982).Google Scholar
  52. 52.
    M. Schlottmann, Cut-and-project sets in locally compact Abelian groups, in Quasicrystals and Discrete Geometry, J. Patera, ed., Fields Institute Monographs, Vol. 10 (AMS, Providence, RI, 1998), pp. 247–264.Google Scholar
  53. 53.
    M. Schlottmann, Generalized model sets and dynamical systems, to appear in Directions in Mathematical Quasicrystals, M. Baake and R. V. Moody, eds., CRM Monograph Series (AMS, Providence, RI, 2000), in press.Google Scholar
  54. 54.
    L. Schwartz, Théorie des Distributions, 3rd ed. (Hermann, Paris, 1998).Google Scholar
  55. 55.
    B. Simon, The Statistical Mechanics of Lattice Gases, Vol. 1 (Princeton University Press, Princeton, 1993).Google Scholar
  56. 56.
    C. J. Thompson, Mathematical Statistical Mechanics (Princeton University Press, Princeton, 1972).Google Scholar
  57. 57.
    A. C. D. van Enter and J. Miekisz, How should one define a (weak) crystal?, J. Stat. Phys. 66:1147–1153 (1992).Google Scholar
  58. 58.
    T. R. Welberry, Diffuse X-ray scattering and models of disorder, Rep. Prog. Phys. 48:1543–1593 (1985).Google Scholar
  59. 59.
    T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region, Phys. Rev. B 13:316–374 (1976).Google Scholar
  60. 60.
    R. Youngblood, J. D. Axe, and B. M. McCoy, Correlations in ice-rule ferroelectrics, Phys. Rev. B 21:5212–5220 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Michael Baake
    • 1
  • Moritz Höffe
    • 1
  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingenGermany

Personalised recommendations