Advertisement

Computational Optimization and Applications

, Volume 11, Issue 2, pp 177–194 | Cite as

Optimal Control of Continuous Casting by Nondifferentiable Multiobjective Optimization

  • Kaisa Miettinen
  • Marko M. Mäkelä
  • Timo Männikkö
Article

Abstract

A new version of an interactive NIMBUS method for nondifferentiable multiobjective optimization is described. It is based on the reference point idea and the classification of the objective functions. The original problem is transformed into a single objective form according to the classification information. NIMBUS has been designed especially to be able to handle complicated real-life problems in a user-friendly way.

The NIMBUS method is used for solving an optimal control problem related to the continuous casting of steel. The main goal is to minimize the defects in the final product. Conflicting objective functions are constructed according to certain metallurgical criteria and some technological constraints. Due to the phase changes during the cooling process there exist discontinuities in the derivative of the temperature distribution. Thus, the problem is nondifferentiable.

Like many real-life problems, the casting model is large and complicated and numerically demanding. NIMBUS provides an efficient way of handling the difficulties and, at the same time, aids the user in finding a satisficing solution. In the end, some numerical experiments are reported and compared with earlier results.

nonsmooth optimization multiple criteria optimization Stefan problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons: New York, 1983.Google Scholar
  2. 2.
    J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape Design: Theory and Applications, John Wiley & Sons: Chichester, 1988.Google Scholar
  3. 3.
    J. Haslinger and T. Roubíček, “Optimal Control of Variational Inequalities, Approximation Theory and Numerical Realization,” Appl. Math. Optim., vol. 14, pp. 187-201, 1986.Google Scholar
  4. 4.
    J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms, vol. I and II, Springer-Verlag: Berlin-Heidelberg, 1993.Google Scholar
  5. 5.
    C. L. Hwang and A. S. M. Masud, Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey, Lecture Notes in Econom. and Math. Systems, vol. 164, Springer-Verlag: Berlin-Heidelberg, 1979.Google Scholar
  6. 6.
    K. C. Kiwiel, “A Method for Solving Certain Quadratic Programming Problems Arising in Nonsmooth Optimization,” IMA J. Numer. Anal., vol. 6, pp. 137-152, 1986.Google Scholar
  7. 7.
    K. C. Kiwiel, “Restricted Step and Levenberg-Marquardt Techniques in Proximal Bundle Methods for Nonconvex Nondifferentiable Optimization,” SIAM J. Optim., vol. 6, pp. 227-249, 1996.Google Scholar
  8. 8.
    E. Laitinen and P. Neittaanmäki, “On Numerical Simulation of the Continuous Casting Process,” J. Engrg. Math., vol. 22, pp. 335-354, 1988.Google Scholar
  9. 9.
    E. Laitinen and P. Neittaanmäki, “On Numerical Solution of the Problem Connected with the Control of the Secondary Cooling in the Continuous Casting Process,” Control Theory and Adv. Tech., vol. 4, pp. 285-305, 1988.Google Scholar
  10. 10.
    M. M. Mäkelä and T. Männikkö, “Numerical Solution of Nonsmooth Optimal Control Problems with an Application to the Continuous Casting Process,” Adv. Math. Sci. Appl., vol. 4, pp. 491-515, 1994.Google Scholar
  11. 11.
    M. M. Mäkelä and P. Neittaanmäki, Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control, World Scientific: Singapore, 1992.Google Scholar
  12. 12.
    T. Männikkö, “Optimal Control of the Continuous Casting Process,” Reports on Applied Mathematics and Computing 1/91, University of Jyväskylä, Department of Mathematics, 1991.Google Scholar
  13. 13.
    T. Männikkö and M. M. Mäkelä, “On the Nonsmooth Optimal Control Problem Connected with the Continuous Casting Process,” in Proceedings of the 1st International Conference on Advanced Computational Methods in Heat Transfer, L.C. Wrobel, C.A. Brebbia, A.J. Nowak (Eds.), Springer-Verlag: Berlin-Heidelberg, pp. 67-78, 1990.Google Scholar
  14. 14.
    T. Männikkö and M. M. Mäkelä, “Nonsmooth Penalty Techniques in Control of the Continuous Casting Process”, in Proceedings of the Conference on Numerical Methods for Free Boundary Problems, P. Neittaanmäki (Ed.), Birkhäuser Verlag: Basel, pp. 297-307, 1991.Google Scholar
  15. 15.
    K. Miettinen, “On the Methodology of Multiobjective Optimization with Applications,” Ph.D. Thesis, Report 60, University of Jyväskylä, Department of Mathematics, 1994.Google Scholar
  16. 16.
    K. Miettinen and M. M. Mäkelä, “An Interactive Method for Nonsmooth Multiobjective Optimization with an Application to Optimal Control,” Optimization Methods and Software, vol. 2, pp. 31-44, 1993.Google Scholar
  17. 17.
    K. Miettinen and M. M. Mäkelä, “A Nondifferentiable Multiple Criteria Optimization Method Applied to Continuous Casting Process,” in Proceedings of the Seventh European Conference on Mathematics in Industry, A. Fasano, M. Primicerio (Eds.), B. G. Teubner: Stuttgart, pp. 255-262, 1994.Google Scholar
  18. 18.
    K. Miettinen and M. M. Mäkelä, “Interactive Bundle-Based Method for Nondifferentiable Multiobjective Optimization: NIMBUS,” Optimization, vol. 34, pp. 231-246, 1995.Google Scholar
  19. 19.
    K. Miettinen and M. M. Mäkelä, “Comparing Two Versions of NIMBUS Optimization System,” Report 23/1996, University of Jyväskylä, Laboratory of Scientific Computing, 1996.Google Scholar
  20. 20.
    K. Miettinen and M. M. Mäkelä, “Interactive Method NIMBUS for Nondifferentiable Multiobjective Optimization Problems,” in Multicriteria Analysis, J. Clímaco (Ed.), Springer-Verlag: Berlin-Heidelberg, pp. 310-319, 1997.Google Scholar
  21. 21.
    K. Miettinen, M. M. Mäkelä and R. A. E. Mäkinen, “Interactive Multiobjective Optimization System NIMBUS Applied to Nonsmooth Structural Design Problems,” in System Modelling and Optimization, J. Doležal, J. Fidler (Eds.), pp. 379-385, 1996.Google Scholar
  22. 22.
    T. Roubíček, “Optimal Control of a Stefan Problem with State-Space Constraints,” Numer. Math., vol. 50, pp. 723-744, 1987.Google Scholar
  23. 23.
    T. Roubíček, “Optimization of a Stefan Problem by Nonsmooth Methods,” in Estimation and Control of Distributed Parameter Systems, W. Desch, F. Kappel, K. Kunisch (Eds.), Birkhäuser: Basel, pp. 295-301, 1991.Google Scholar
  24. 24.
    T. Roubíček and C. Verdi, “A Stable Approximation of a Constrained Optimal Control for Continuous Casting,” Numer. Funct. Anal. Optim., vol. 13, pp. 487-494, 1992.Google Scholar
  25. 25.
    H. Schramm and J. Zowe, “A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results,” SIAM J. Optim., vol. 2, pp. 121-152, 1992.Google Scholar
  26. 26.
    R. E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Applications, John Wiley & Sons: New York, 1986.Google Scholar
  27. 27.
    K. L. Teo and C. J. Goh, “On Constrained Optimization Problems with Nonsmooth Cost Functionals,” Appl. Math. Optim., vol. 18, pp. 181-190, 1988.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Kaisa Miettinen
    • 1
  • Marko M. Mäkelä
    • 1
  • Timo Männikkö
    • 1
  1. 1.Department of MathematicsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations