Journal of Statistical Physics

, Volume 98, Issue 1–2, pp 375–404 | Cite as

What Can One Learn About Self-Organized Criticality from Dynamical Systems Theory?

  • Ph. Blanchard
  • B. Cessac
  • T. Krüger


We develop a dynamical system approach for the Zhang model of self-organized criticality, for which the dynamics can be described either in terms of iterated function systems or as a piecewise hyperbolic dynamical system of skew-product type. In this setting we describe the SOC attractor, and discuss its fractal structure. We show how the Lyapunov exponents, the Haussdorf dimensions, and the system size are related to the probability distribution of the avalanche size via the Ledrappier–Young formula.

self-organized criticality hyperbolic dynamical systems iterated functions systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Bak, C. Tang, and K. Wiesenfeld, Self organised criticality: An explanation of 1/f noise, Phys. Rev. Lett. 59(4):381–384 (1987).Google Scholar
  2. 2.
    P. Bak, C. Tang, and K. Wiesenfeld, Self organised criticality, Phys. Rev. A. 38(1):364–374 (1988).Google Scholar
  3. 3.
    P. Bak, How Nature Works (Springer-Verlag, 1996).Google Scholar
  4. 4.
    P. Bàntay and M. Jànosi, Self-organization and anomalous diffusion, Physica A 185:11–18 (1992).Google Scholar
  5. 5.
    M. Barnsley, Fractals Everywhere (Academic Press, Boston, 1988).Google Scholar
  6. 6.
    C. Beck and F. Schloegl, Thermodynamics of Chaotic Systems (Cambridge Non Linear Science Series 4, 1993).Google Scholar
  7. 7.
    Ph. Blanchard, B. Cessac, and T. Krüger, A dynamical systems approach for SOC models of Zhang's type, J. Stat. Phys. 88:307–318 (1997).Google Scholar
  8. 8.
    Ph. Blanchard, B. Cessac, and T. Krüger, Ergodicity in one dimensional self-organized criticality, in preparation.Google Scholar
  9. 9.
    Ph. Blanchard, B. Cessac, and Krüger, Lyapunov exponents and critical exponents in self-organized criticality, in preparation.Google Scholar
  10. 10.
    R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes in Math. 470 (Springer-Verlag, Berlin, 1975).Google Scholar
  11. 11.
    B. Cessac, Ph. Blanchard, and T. Krüger, A Dynamical System Approach to Self-Organized Criticality (Mathematical Results in Statistical Mechanics, Marseille 1998, Word Scientific Singapore).Google Scholar
  12. 12.
    D. Dhar, Phys. Rev. Lett. 64:1613 (1990); D. Dhar and S. N. Majumdar, J. Phys. A 23:4333 (1990); S. N. Majumdar and D. Dhar, Physica A 185:129 (1992). D. Dhar and R. Ramaswamy, Phys. Rev. Lett. 63:1659 (1989).Google Scholar
  13. 13.
    Díaz-guilera, Dynamic renormalization group approach to self-organized critical phenomena, Europhys. Let. 26(3):177–182 (1994); Díaz-guilera, Noise and dynamics of self-organized critical phenomena, Phys. Rev. A 45(12):8551-8558 (1992).Google Scholar
  14. 14.
    J. P. Eckmann and D. Ruelle, Ergodic theory of strange attractors, Rev. of Mod. Physics 57:617 (1985); J. P. Eckmann, O. Kamphorst, D. Ruelle, and S. Cilliberto, Phys. Rev. A 34:4971 (1986).Google Scholar
  15. 15.
    F. Gantmacher, Theéorie des Matrices (Jacques Gabay É ditions).Google Scholar
  16. 16.
    K. Falconer, Techniques in Fractal Geometry (Wiley, 1997).Google Scholar
  17. 17.
    P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge Non-Linear Science Series 9, 1998).Google Scholar
  18. 18.
    J. E. Hutchinson, Fractals and self-similarity, Indiana University Mathematics Journal 30(5) (1981).Google Scholar
  19. 19.
    H. J. Jensen, Self-organized criticality emergent complex behavior, in Physical and Biological Systems (Cambridge Lecture Notes in Physics 10, Cambridge University Press, 1998).Google Scholar
  20. 20.
    F. Ledrappier and L. S. Young, The metric entropy for diffeomorphisms, Annals of Math. 122:509–574 (1985).Google Scholar
  21. 21.
    S. Luebeck, Large-scale simulations of the Zhang sandpile model, Phys. Rev. E. 56(2):1590–1594 (1997).Google Scholar
  22. 22.
    Ya. B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surveys 32:55–114 (1977).Google Scholar
  23. 23.
    L. Pietronero, P. Tartaglia, and Y. C. Zhang, Theoretical studies of self-organized criticality, Physica A 173:2244 (1991); R. Cafiero, V. Loreto, L. Pietronero, A. Vespignani, and S. Zapperi, Local rigidity and self-organized criticality for avalanches, Europ. Let. 129(2):111-116 (1995); L. Pietronero, A. Vespignani, and S. Zapperi, Phys. Rev. Lett. 72:1690 (1994); A. Vespignani, S. Zapperi, and L. Pietronero, Phys. Rev. E 51:1711 (1995).Google Scholar
  24. 24.
    M. Pollicott, Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds (London Math. Soc., Lect. Notes Series 180, Cambridge University Press, 1993).Google Scholar
  25. 25.
    D. Ruelle, Thermodynamic Formalism (Reading, Massachusetts, Addison-Wesley, 1978).Google Scholar
  26. 26.
    J. Schmeling, Habilitation Thesis (Berlin, 1996).Google Scholar
  27. 27.
    Ya. G. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surveys 27(4):21–69 (1972).Google Scholar
  28. 28.
    E. H. Speer, J. Stat. Phys. 71:61 (1993).Google Scholar
  29. 29.
    L. S. Young, Ergodic theory of differentiable dynamical systems. “Real and complex dynamics,” Ed. Branner and Hjorth, NATO ASI series, Kluwer Academic Publishers, 1995, pp. 293–336.Google Scholar
  30. 30.
    H. Y. Zhang, Scaling theory of self-organized criticality, Phys. Rev. Let. 63(5):470–473 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Ph. Blanchard
    • 1
  • B. Cessac
    • 2
  • T. Krüger
    • 1
    • 3
  1. 1.University of Bielefeld, BiBoSBielefeldGermany
  2. 2.Institut Non Linéaire de NiceValbonneFrance
  3. 3.Technische UniversitaetBerlinGermany

Personalised recommendations