Journal of Statistical Physics

, Volume 98, Issue 5–6, pp 1409–1416 | Cite as

A Remark on the Notion of Robust Phase Transitions

  • Aernout C. D. van Enter
Article

Abstract

We point out that the high-qPotts model on a regular lattice at its transition temperature provides an example of a nonrobust—in the sense recently proposed by Pemantle and Steif—phase transition.

robust phase transitions Potts models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, Discontinuity of the magnetization in the one-dimensional x – y 2Ising and Potts models, J. Stat. Phys. 50:1–40 (1988).Google Scholar
  2. 2.
    P. M. Bleher, J. Ruiz, and V. A. Zagrebnov, On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice, J. Stat. Phys. 79:473–482.Google Scholar
  3. 3.
    J. Bricmont, K. Kuroda, and J. L. Lebowitz, First order transitions in lattice and continuous systems: Extension of Pirogov–Sinai theory, Comm. Math. Phys. 101:501–538 (1985).Google Scholar
  4. 4.
    J. Bricmont, J. L. Lebowitz, and C.-E. Pfister, On the equivalence of boundary conditions, J. Stat. Phys. 21:573–582 (1979).Google Scholar
  5. 5.
    J. T. Chayes, L. Chayes, and J. Fröhlich, The low-temperature behavior of disordered magnets, Comm. Math. Phys. 100:399–437 (1985).Google Scholar
  6. 6.
    J. T. Chayes, L. Chayes, J. P. Sethna, and D. J. Thouless, A mean field spin-glass with short-range interactions, Comm. Math. Phys. 106:41–89 (1986).Google Scholar
  7. 7.
    R. G. Edwards and A. D. Sokal, Generalization of the Fortuin–Kasteleyn–Swendsen– Wang representation and Monte Carlo algorithm, Phys. Rev. D. 38:2009–2012 (1988).Google Scholar
  8. 8.
    C. M. Fortuin and P. W. Kasteleyn, On the random cluster model I, introduction and relation to other models, Physica 57:536–564 (1972).Google Scholar
  9. 9.
    H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics, Vol. 9 (Walter de Gruyter, Berlin–New York, 1988).Google Scholar
  10. 10.
    H.-O. Georgii, O. Häggström, and C. Maes, The random geometry of equilibrium phases, in Phase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, to appear).Google Scholar
  11. 11.
    G. Grimmett, The stochastic random-cluster process and the uniqueness of random-cluster measures, Ann. Prob. 23:1461–1510 (1995).Google Scholar
  12. 12.
    D. Ioffe, On the extremality of the disordered state for the Ising model on the Bethe lattice, Lett. Math. Phys. 37:137–143 (1996).Google Scholar
  13. 13.
    R. Kotecký and S. B. Shlosman, First-order transitions in large entropy lattice models, Comm. Math. Phys. 83:493–515 (1982).Google Scholar
  14. 14.
    L. Laanait, A. Messager, S. Miracle-Sole, J. Ruiz, and S. Shlosman, Interfaces in the Potts model I: Pirogov–Sinai theory of the Fortuin–Kasteleyn representation, Comm. Math. Phys. 140:81–92 (1991).Google Scholar
  15. 15.
    J. L. Lebowitz and O. Penrose, Thermodynamic limit of the free energy and correlation functions of spin systems, Acta Physica Austriaca, Suppl XVI:201–220 (1976).Google Scholar
  16. 16.
    I. Medved, Finite-size effects for the Potts model, Master's thesis, Prague, 1996, and to be published. See Medved's homepage at http:––otokar.troja.mff.cuni.cz–medved–almamater– almamater.htm.Google Scholar
  17. 17.
    H. Narnhofer and D. W. Robinson, Dynamical stability and pure thermodynamic phases, Comm. Math. Phys. 41:89–97 (1975).Google Scholar
  18. 18.
    R. Pemantle and J. E. Steif, Robust phase transitions for Heisenberg and other models on general trees, Ann. Prob. 27:876–912 (1999).Google Scholar
  19. 19.
    A. C. D. van Enter, R. Fernández, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory, J. Stat. Phys. 72:879–1167 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Aernout C. D. van Enter
    • 1
  1. 1.Instituut voor theoretische natuurkunde R.U.G. Nijenborgh 4GroningenThe Netherlands

Personalised recommendations