Journal of Statistical Physics

, Volume 98, Issue 5, pp 1135–1148

Dynamical Localization for the Random Dimer Schrödinger Operator

  • Stephan De Bièvre
  • François Germinet
Article

DOI: 10.1023/A:1018615728507

Cite this article as:
De Bièvre, S. & Germinet, F. Journal of Statistical Physics (2000) 98: 1135. doi:10.1023/A:1018615728507

Abstract

We study the one-dimensional random dimer model, with Hamiltonian Hω=Δ+Vω, where for all x\(\mathbb{Z}\), Vω(2x)=Vω(2x+1) and where the Vω(2x) are i.i.d. Bernoulli random variables taking the values ±V, V>0. We show that, for all values of Vand with probability one in ω, the spectrum of His pure point. If V≤1 and V≠1/\(\sqrt 2\), the Lyapunov exponent vanishes only at the two critical energies given by EV. For the particular value V=1/\(\sqrt 2\), respectively, V=\(\sqrt 2\), we show the existence of new additional critical energies at E=±3/\(\sqrt 2\), respectively, E=0. On any compact interval Inot containing the critical energies, the eigenfunctions are then shown to be semi-uniformly exponentially localized, and this implies dynamical localization: for all q>0 and for all ψ\(\ell\)2(\(\mathbb{Z}\)) with sufficiently rapid decrease
$${\mathop {\sup }\limits_t} r_{\psi ,I}^{\left( q \right)} {\kern 1pt} \left( t \right): = {\mathop {\sup }\limits_t} \left\langle {P_I \left( {H\omega } \right)\psi _t ,\left| X \right|^q P_I \left( {H\omega } \right)\psi _t } \right\rangle < \infty $$
Here \(\psi _t = e^{- iH_{\omega ^t}} \psi\), and PI(Hω) is the spectral projector of Hωonto the interval I. In particular, if V>1 and V\(\sqrt 2\), these results hold on the entire spectrum [so that one can take I=σ(Hω)].
Schrödinger operator dimer random model Anderson localization dynamical localization Lyapunov exponent delocalization 

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Stephan De Bièvre
    • 1
  • François Germinet
    • 2
  1. 1.UFR de Mathématiques et URA GATUniversité des Sciences et Technologies de LilleVilleneuve d'Ascq CedexFrance
  2. 2.UFR de Mathématiques et URA GATUniversité des Sciences et Technologies de LilleVilleneuve d'Ascq CedexFrance

Personalised recommendations