Journal of Statistical Physics

, Volume 98, Issue 5–6, pp 1135–1148

Dynamical Localization for the Random Dimer Schrödinger Operator

  • Stephan De Bièvre
  • François Germinet


We study the one-dimensional random dimer model, with Hamiltonian Hω=Δ+Vω, where for all x\(\mathbb{Z}\), Vω(2x)=Vω(2x+1) and where the Vω(2x) are i.i.d. Bernoulli random variables taking the values ±V, V>0. We show that, for all values of Vand with probability one in ω, the spectrum of His pure point. If V≤1 and V≠1/\(\sqrt 2\), the Lyapunov exponent vanishes only at the two critical energies given by EV. For the particular value V=1/\(\sqrt 2\), respectively, V=\(\sqrt 2\), we show the existence of new additional critical energies at E=±3/\(\sqrt 2\), respectively, E=0. On any compact interval Inot containing the critical energies, the eigenfunctions are then shown to be semi-uniformly exponentially localized, and this implies dynamical localization: for all q>0 and for all ψ\(\ell\)2(\(\mathbb{Z}\)) with sufficiently rapid decrease
$${\mathop {\sup }\limits_t} r_{\psi ,I}^{\left( q \right)} {\kern 1pt} \left( t \right): = {\mathop {\sup }\limits_t} \left\langle {P_I \left( {H\omega } \right)\psi _t ,\left| X \right|^q P_I \left( {H\omega } \right)\psi _t } \right\rangle < \infty $$
Here \(\psi _t = e^{- iH_{\omega ^t}} \psi\), and PI(Hω) is the spectral projector of Hωonto the interval I. In particular, if V>1 and V\(\sqrt 2\), these results hold on the entire spectrum [so that one can take I=σ(Hω)].
Schrödinger operator dimer random model Anderson localization dynamical localization Lyapunov exponent delocalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies: an elementary derivation, Commun. Math. Phys. 157:245–278 (1993); M. Aizenman, Localization at weak disorder: Some elementary bounds, Rev. Math. Phys. 6:1163–1182 (1994).Google Scholar
  2. 2.
    Bougerol and R. Lacroix, Products of Random Matrices with Applications to Schrödinger Operators(Birkhäuser, 1985).Google Scholar
  3. 3.
    A. Bovier, Perturbation theory for the random dimer model, J. Phys. A 25:1021 (1992).Google Scholar
  4. 4.
    R. Carmona, A. Klein, and F. Martinelli, Anderson localization for bernoulli and other singular potentials, Commun. Math. Phys. 108:41–66 (1987).Google Scholar
  5. 5.
    R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operator(Birkhäuser, 1990).Google Scholar
  6. 6.
    H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators(Springer-Verlag, 1987).Google Scholar
  7. 7.
    D. Damanik and P. Stollmann, Preprint (1999).Google Scholar
  8. 8.
    R. Del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum IV: Hausdorff dimensions, rank one perturbations and localization, J. d'Analyse Math. 69:153–200 (1996).Google Scholar
  9. 9.
    A. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124:285–299 (1989).Google Scholar
  10. 10.
    D. H. Dunlap, H.-L. Wu, and P. Phillips, Absence of localization in a random Dimer model, Phys. Rev. Lett. 65:88 (1990).Google Scholar
  11. 11.
    S. N. Evangelou and E. N. Economou, Reflectionless modes in chains with large-size homogeneous impurities, J. Phys. A 26:2803–2813 (1993).Google Scholar
  12. 12.
    J. C. Flores and M. Hilke, Absence of localization in disordered systems with local correlation, J. Phys. A 26:L1255–1259 (1993).Google Scholar
  13. 13.
    F. Germinet, Dynamical localization II with an application to the almost Mathieu operator, J. Stat Phys. 95:273–286 (1999).Google Scholar
  14. 14.
    F. Germinet and S. De Bièvre, Dynamical localization for discrete and continuous random Schrödinger operators, Commun. Math. Phys. 194:323–341 (1998).Google Scholar
  15. 15.
    F. Germinet and S. De Bièvre, Localisation dynamique et opérateurs de Schrödinger aléatoires, C. R. Acad. Sci. Paris 326(I):261–264 (1998).Google Scholar
  16. 16.
    F. Germinet and A. Klein, in preparation; F. Germinet and S. Jitomirskaya, Strong dynamical localization for the almost Mathieu model, Preprint, january 2000 or see mp_arc 00-44.Google Scholar
  17. 17.
    S. Gangopadhyay and A. K. Sen, The resonance structure in a random dimer model, J. Phys.: Condens. Matter 4:9939–9954 (1992).Google Scholar
  18. 18.
    B. Iversen, Hyperbolic Geometry(London Mathematical Society, Student Texts 25, 1992).Google Scholar
  19. 19.
    I. Lifshits, S. Gredeskul, and L. Pastur, Introduction to the Theory of Disordered Systems(Springer, Berlin, 1986).Google Scholar
  20. 20.
    M. Loève, Probability Theory(Van Nostrand Company, Toronto/New York/London, 1963).Google Scholar
  21. 21.
    L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators(Springer-Verlag, 1992).Google Scholar
  22. 22.
    H.-L. Wu, W. Goff, and P. Phillips, Insulator-metal transitions in random lattices containing symmetrical defects, Phys. Rev. B 45:1623–1628 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Stephan De Bièvre
    • 1
  • François Germinet
    • 2
  1. 1.UFR de Mathématiques et URA GATUniversité des Sciences et Technologies de LilleVilleneuve d'Ascq CedexFrance
  2. 2.UFR de Mathématiques et URA GATUniversité des Sciences et Technologies de LilleVilleneuve d'Ascq CedexFrance

Personalised recommendations