Advertisement

Journal of Biomolecular NMR

, Volume 9, Issue 2, pp 207–211 | Cite as

A three-dimensional NMR experiment with improved sensitivity for carbonyl–carbonyl J correlation in proteins

  • Stephan Grzesiek
  • Ad Bax
Article

Abstract

Recently, a quantitative J correlation technique has been presented that permits measurementof 3JC′C′ in proteins isotopically enriched with 13C [Hu, J.-S. and Bax, A.(1996) J. Am. Chem. Soc., 118, 8170–8171]. Here, we describe an analogousexperiment that is less sensitive to transverse 13C′ relaxation, which is the principallimiting factor in all 13C-13C long-range correlation experiments on macromolecules. Thenew scheme utilizes homonuclear Hartmann–Hahn cross polarization (TOCSY) insteadof a COSY-type transfer to accomplish magnetization transfer; a description of the relevantrelaxation terms is presented. The experiment is demonstrated for ubiquitin and HIV-1 Nef.The results show excellent agreement between 3JC′C′ values measured forubiquitin with the new scheme and those reported previously. The experiment is particularlyuseful for distinguishing backbone φ angles that are smaller than -120° from thoselarger than -120°.

Carbon–carbon J coupling HOHAHA TOCSY Relaxation φ Angle HIV-1 Nef Ubiquitin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. (1961) The Principles of Nuclear Magnetic Resonance, Oxford University Press, Oxford, U.K., p.70.Google Scholar
  2. Bax, A. and Davis, D.G. (1985) J. Magn. Reson., 65, 355–360.Google Scholar
  3. Braunschweiler, L. and Ernst, R.R. (1983) J. Magn. Reson., 53, 521–528.Google Scholar
  4. Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, U.K., p.445.Google Scholar
  5. Garrett, D.S., Kuszewski, J., Hancock, T.J., Lodi, P.J., Vuister, G.W., Gronenborn, A.M. and Clore, G.M. (1994) J. Magn. Reson., B104, 99–103.Google Scholar
  6. Griesinger, C., Gemperle, C., Sørensen, O.W. and Ernst, R.R. (1987) Mol. Phys., 62, 295–308.Google Scholar
  7. Grzesiek, S. and Bax, A. (1993) J. Am. Chem. Soc., 115, 12593–12594.Google Scholar
  8. Grzesiek, S., Bax, A., Clore, G.M., Gronenborn, A.M., Hu, J.-S., Kaufman, J., Palmer, I., Stahl, S.J. and Wingfield, P.T. (1996) Nat. Struct. Biol., 3, 340–345.Google Scholar
  9. Hu, J.-S. and Bax, A. (1996) J. Am. Chem. Soc., 118, 8170–8171.Google Scholar
  10. Kay, L.E., Xu, G.Y. and Yamazaki, T. (1994) J. Magn. Reson., A109, 129–133.Google Scholar
  11. Laskowski, R., Rullmann, J.A.C., MacArthur, M.W., Kaptein, R. and Thornton, J.M. (1996) J. Biomol. NMR, 8, 477–486.Google Scholar
  12. Pardi, A., Billeter, M. and Wüthrich, K. (1984) J. Mol. Biol., 180, 741–751.Google Scholar
  13. Schleucher, J., Quant, J., Glaser, S.J. and Griesinger, S. (1995) In Encyclopedia of Nuclear Magnetic Resonance, Vol. 6 (Grant, D.M. and Harris, R.K., Editors-in-Chief), Wiley, London, U.K., pp. 4789–4804.Google Scholar
  14. Shaka, A.J., Lee, C.J. and Pines, A. (1988) J. Magn. Reson., 77, 274–293.Google Scholar
  15. Wang, A.C. and Bax, A. (1996) J. Am. Chem. Soc., 118, 2483–2494.Google Scholar
  16. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY, U.S.A.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Stephan Grzesiek
    • 1
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical PhysicsNational Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaU.S.A

Personalised recommendations