Journal of Muscle Research & Cell Motility

, Volume 18, Issue 3, pp 275–283 | Cite as

The in vitro motility activity of β-cardiac myosin depends on the nature of the β-myosin heavy chain gene mutation in hypertrophic cardiomyopathy



Several mutations in the β-myosin heavy chain gene cause hypertrophic cardiomyopathy. This study investigates (1) the in vitro velocities of translocation of fluorescently-labelled actin by β-myosin purified from soleus muscle of 30 hypertrophic cardiomyopathy patients with seven distinct β-myosin heavy chain gene mutations: Thr124Ile, Tyr162Cys, Gly256Glu, Arg403Gln, Val606Met, Arg870His, and Leu908Val mutations; and (2) motility activity of β-myosin purified from cardiac and soleus muscle biopsies in the same patients. The velocity of translocation of actin by β-myosin purified from soleus or cardiac muscle of 22 normal controls was 0.48 ± 0.09 μm s−1. By comparison, the motility activity was reduced in all 30 patients with β-myosin heavy chain gene mutations (range, 0.112 ± 0.041 to 0.292 ± 0.066 μm s−1). Notably, the Tyr162Cys and Arg403Gln mutations demonstrated significantly lower actin sliding velocities: 0.123 ± 0.044, and 0.112 ± 0.041 μm s−1, respectively. β-myosin purified from soleus muscle from four patients with the Arg403Gln mutation had a similar actomyosin motility activity compared to β-myosin purified from their cardiac biopsies (0.127 ± 0.045 μm s−1 versus 0.119 ± 0.068 μm s−1, respectively). Since these seven mutations lie in several distinct functional domains, it is likely that the mechanisms of their inhibitions of motility are different


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANAN, R., GREVE, G., THIERFELDER, L., WATKINS, H., MCKENNA, W. J., SOLOMON, S., VECCHIO, C., SHONO, H., NAKAO, S., TANAKA, H., MARES, A., JR., TOWBIN, J. A., SPIRITO, P., ROBERTS, R., SEIDMAN, J. G. & SEIDMAN, C. E. (1994) Prognostic implications of novel · cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J. Clin. Invest. 93, 280–5.CrossRefPubMedGoogle Scholar
  2. BERGER, B., WILSON, D., WOLF, E., TONCHEV, T., MILLA, M. & KIM, P. (1995) Predicting coiled-coil by use of pairwise residue correlations. Proc. Natl Acad. Sci. USA 92, 8259–63.CrossRefPubMedGoogle Scholar
  3. BONNE, G., CARRIER, L., BERCOVICI, J., CRUAUD, C., RICHARD, P., HAINQUE, B., GAUTEL, M., LABEIT, S., JAMES, M., BECKMANN, J., WEISSENBACH, J., VOSBERG, H. P., FISZMAN, M., KOMAJDA, M. & SCHWARTZ, K. (1995) Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nature Genet. 11, 438–40.CrossRefPubMedGoogle Scholar
  4. CUDA, G., FANANAPAZIR, L., ZHU, W.-S., SELLERS, J. R. & EPSTEIN, N. D. (1993) Skeletal muscle expression and abnormal function of ·-myosin in hypertrophic cardiomyopathy. J. Clin. Invest. 91, 2861–5.CrossRefPubMedGoogle Scholar
  5. DAUSSE, E., KOMAJDA, M., FETLER, L., DUBOURG, O., DUFOUR, C., CARRIER, L., WISNEWSKY, C., BERCOVICI, J., HENGSTENBERG, C., AL-MAHDAWI, S., ISNARD, R., HAGEGE, A., BOUHOUR, J.-B., DESNOS, M., BECKMANN, J., WEISSENBACH, J., SCHWARTZ, K. & GUICHENEY, P. (1993) Familial hypertrophic cardiomyopathy. Microsatellite haplotyping and identification of a hot spot for mutations in the ·-myosin heavy chain gene. J. Clin. Invest. 92, 2807–13.CrossRefPubMedGoogle Scholar
  6. EISENBERG, E. & KIELLEY, W. W. (1974) Troponin-tropomyosin complex. J. Biol. Chem. 249, 4742–8.PubMedGoogle Scholar
  7. EPSTEIN, N. D., COHN, G. M., CYRAN, F. & FANANAPAZIR, L. (1992a) Differences in clinical expression of hypertrophic cardiomyopathy associated with two distinct mutations in the ·-myosin heavy chain gene: A 908Leu→Val mutation and a 403Arg→Gln mutation. Circulation 86, 345–52.PubMedGoogle Scholar
  8. EPSTEIN, N. D., FANANAPAZIR, L., LIN, H. J., WHITE, R., LALOUEL, J. M., NIENHUIS, A. & LEPPERT, M. (1992b) Evidence of genetic heterogeneity in five fimilies with familial hypertrophic cardiomyopathy. Circulation 85, 635–47.PubMedGoogle Scholar
  9. FANANAPAZIR, L. & EPSTEIN, N. D. (1994) Genotypephenotype correlations in hypertrophic cardiomyopathy: insights provided by comparisons of kindreds with distinct and identical ·-myosin heavy chain gene mutations. Circulation 89, 22–32.PubMedGoogle Scholar
  10. FANANAPAZIR, L., DALAKAS, M. C., CYRAN, F., COHN, G. & EPSTEIN, N. D. (1993) Missense mutations in the ·-myosin heavy-chain gene cause central core disease in hypertrophic cardiomyopathy. Proc. Natl Acad. Sci. USA 90, 3993–7.CrossRefPubMedGoogle Scholar
  11. FANANAPAZIR, L., MCAREAVEY, D. & EPSTEIN, N. D. (1994) Hypertrophic cardiomyopathy. In Electrophysiology, From Cell to Bedside (edited by ZIPES, D. & JALIFE, J. ) pp. 769–79. Philadelphia: W. B. Saunders Co.Google Scholar
  12. FISHER, A. J., SMITH, C. A., THODEN, J. B., SMITH, R., SUTOH, K., HOLDEN, H. M. & RAYMENT, I. (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideumcomplexed with MgADPBeFx and MgADPAlF4. Biochemistry 34, 8960–72.CrossRefPubMedGoogle Scholar
  13. GEISTERFER-LOWRANCE, A. A. T., KASS, S., TANIGAWA, G., VOSBERG, H.-P. MCKENNA, W., SEIDMAN, C. E. & SEIDMAN, J. G. (1990) A molecular basis for familial hypertrophic cardiomyopathy: a · cardiac myosin heavy chain gene missense mutation. Cell 62, 999–1006.CrossRefPubMedGoogle Scholar
  14. HARRIS, D. E., WORK, S. S., WRIGHT, R. K., ALPERT, N. R. & WARSHAW, D. M. (1994) Smooth, cardiac and skeletal muscle myosin force and motion generation assessed by cross-bridge mechanical interactions in vitro. J. Muscle Res. Cell Motil. 15, 11–19.CrossRefPubMedGoogle Scholar
  15. HOMSHER, E., WANG, F. & SELLERS, J. R. (1992) Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin. Am. J. Physiol. Cell Physiol. 262, C714–23.Google Scholar
  16. KISHINO, A. & YANAGIDA, T. (1988) Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–6.CrossRefPubMedGoogle Scholar
  17. KRAULIS, P. J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structure. J. Appl. Crystallogr. 24, 946–50.CrossRefGoogle Scholar
  18. KUBALEK, E. W., UYEDA, T. Q. P. & SPUDICH, J. A. (1996) a Dictyosteliummyosin II lacking a proximal 58-kDa portion of the tail is functional in vitroand in vivo . Mol. Biol. Cell 3, 1455–62.Google Scholar
  19. LANKFORD, E. B., EPSTEIN, N. D., FANANAPAZIR, L. & SWEENEY, H. L. (1995) Abnormal contractile properties of muscle fibres expressing ·-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J. Clin. Invest. 95, 1409–14.CrossRefPubMedGoogle Scholar
  20. MARGOSSIAN, S. S., KRUEGER, J. W., SELLERS, J. R., CUDA, G., CAULFIELD, J. B., NORTON, P. & SLAYTER, H. S. (1991) Influence of the cardiac myosin hinge region on contractile activity. Proc. Natl Acad. Sci. USA 88, 4941–5.CrossRefPubMedGoogle Scholar
  21. MCLACHLAN, A. D. (1984) Structural implications of the myosin amino acid sequence. Annu. Rev. Biophys. Bioeng. 13, 167–89.CrossRefPubMedGoogle Scholar
  22. MOOLMAN, J. C., BRINK, P. A. & CORFIELD, V. A. (1993) Identification of a new missense mutation at Arg403, a CpG mutation hotspot, in exon 13 of the ·-myosin heavy chain gene in hypertrophic cardiomyopathy. Hum. Mol. Genet. 2, 1731–2.CrossRefPubMedGoogle Scholar
  23. POETTER, K., JIANG, H., HASSANZADEH, S., MASTER, S. R., CHANG, A., DALAKAS, M. C., RAYMENT, I., SELLERS, J. R., FANANAPAZIR, L. & EPSTEIN, N. D. (1996) Mutations in either the essential or regulatory light chains are associated with a rare myopathy in human heart and skeletal muscle. Nature Gen. 13, 63–9.CrossRefGoogle Scholar
  24. RAYMENT, I., HOLDEN, H. M., WHITTAKER, M., YOHN, C. B., LORENZ, M., HOLMES, K. C. & MILLIGAN, R. A. (1993a) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–65.CrossRefPubMedGoogle Scholar
  25. RAYMENT, I., RYPNIEWSKI, W. R., SCHMIDT-BäSE, K., SMITH, R., TOMCHICK, D. R., BENNING, M. M., WINKELMANN, D. A., WESENBERG, G. & HOLDEN, H. M. (1993b) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–8.CrossRefPubMedGoogle Scholar
  26. RAYMENT, I., HOLDEN, H. M., SELLERS, J. R., FANANAPAZIR, L. & EPSTEIN, N. D. (1995) Structural interpretation of the mutations in the ·-cardiac myosin that have been implicated in familial hypertrophic cardiomyopathy. Proc. Natl Acad. Sci. USA 92, 3864–8.CrossRefPubMedGoogle Scholar
  27. SCHWARTZ, K., CARRIER, L., GUICHENEY, P. & KOMAJDA, M. (1995) Molecular Basis of Familial Cardiomyopathies. Circulation 91, 532–40.PubMedGoogle Scholar
  28. SELLERS, J. R. & GOODSON, H. V. (1995) Motor proteins 2: myosin. Protein Profile 2, 1323–423.PubMedGoogle Scholar
  29. SELLERS, J. R., SPUDICH, J. A. & SHEETZ, M. P. (1985) Light chain phosphorylation regulates the movement of smooth muscle myosin on actin filaments. J. Cell Biol. 101, 1897–902.CrossRefPubMedGoogle Scholar
  30. SUGI, H., KOBAYASHI, T., GROSS, T., NOGUCHI, K., KARR, T. & HARRINGTON, W. F. (1992) Contraction characteristics and ATPase activity of skeletal muscle fibres in the presence of antibody to myosin subfragment 2. Proc. Natl. Acad. Sci. USA, 89, 6134–7.CrossRefPubMedGoogle Scholar
  31. SWEENEY, H. L., STRACESKI, A. J., LEINWAND, L. A., TIKUNOV, B. A. & FAUST, L. (1994) Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J. Biol. Chem. 269, 1603–5.PubMedGoogle Scholar
  32. TOYOSHIMA, Y. Y., KRON, S. J., MCNALLY, E. M., NIEBLING, K. R., TOYOSHIMA, C. & SPUDICH, J. A. (1987) Myosin subfragment-1 sufficient to move actin filaments in vitro. Nature 328, 536–9.CrossRefPubMedGoogle Scholar
  33. UMEMOTO, S. & SELLERS, J. R. (1990) Characterization of in vitromotility assays using smooth muscle and cytoplasmic myosins. J. Biol. Chem. 265, 14864–9.PubMedGoogle Scholar
  34. VIKSTROM, K. L. & LEINWAND, L. A. (1996) Contractile protein mutations and heart disease. Current Opinion in Cell Biology 8, 97–105.CrossRefPubMedGoogle Scholar
  35. WARSHAW, D. M., DESROSIERS, J. M., WORK, S. S. & TRYBUS, K. M. (1990) Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J. Cell Biol. 111, 453–63.CrossRefPubMedGoogle Scholar
  36. WATKINS, H., ROSENZWEIG, A., HWANG, D.-S., LEVI, T., MCKENNA, W., SEIDMAN, C. E. & SEIDMAN, J. G. (1992) Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N. Engl. J. Med. 326, 1108–14.CrossRefPubMedGoogle Scholar
  37. WATKINS, H., CONNER, D., THIERFELDER, L., JARCHO, J. A., MACRAE, C., MCKENNA, W. J., MARON, B. J., SEIDMAN, J. G. & SEIDMAN, C. E. (1995a) Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature Genet. 11, 434–7.CrossRefPubMedGoogle Scholar
  38. WATKINS, H., MCKENNA, W. J., THIERFELDER, L., SUK, H. J., ANAN, R., O'DONOGHUE, A., SPIRITO, P., MATSUMORI, A., MORAVEC, C. S., SEIDMAN, J. G. & SEIDMAN, C. E. (1995b) Mutations in the genes for the cardiac troponin T and ·-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med. 332, 1058–64.CrossRefPubMedGoogle Scholar
  39. YAMASHITA, H., SUGIURA, S., SERIZAWA, T., SUGIMOTO, T., IIZUKA, M., KATAYAMA, E. & SHIMMEN, T. (1992) Sliding velocity of isolated rabbit cardiac myosin correlates with isozyme distribution. Am. J. Physiol. Heart Circ. Physiol. 263, H464–72.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
    • 2
    • 2
    • 1
  1. 1.Laboratory of Molecular CardiologyNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaUSA
  2. 2.Cardiology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations