Advertisement

Journal of Materials Science

, Volume 32, Issue 21, pp 5717–5724 | Cite as

Conductive rubber composites from different blends of ethylene-propylene-diene rubber and nitrile rubber

  • K. P SAU
  • T. K CHAKI
  • D KHASTGIR
Article

Abstract

Conductive rubber composites were derived from different blends of ethylene-propylene-diene monomer (EPDM) rubber and acrylonitrile butadiene rubber (NBR) containing acetylene black. The electrical and mechanical properties of these composites were measured. The percolation limit for achieving high conductivity of conductive filler depends on the viscosity of the blend. The higher the viscosity, the higher is the percolation limit. The conductivity rises with increasing temperature, and the activation energy of conduction increases with the decrease in the loading of conductive filler and percentage of NBR in the blend. Electrical hysteresis and an electrical resistivity difference during the heating-cooling cycle are observed for these systems, which is mainly due to some kind of irreversible change occurring in the conductive networks during heating. The mechanisms of conduction of these systems were discussed in the light of different theories. It was found that the degree of reinforcement by acetylene black in blends compares with those in the pure components NBR and EPDM. This is due to incompatibility of two elastomers in the blend.

Keywords

Conductive Network Carbon Black Particle Volume Resistivity Rubber Matrix Acetylene Black 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. SAKAMOTO, Int. Polym. Sci. Technol. 14 (1987) T/40.Google Scholar
  2. 2.
    K. KANAMARI, ibid. 13 (1986) T/47.Google Scholar
  3. 3.
    A. K. SIRKAR and T. G. LAMOND, Rubber Chem. Technol. 46 (1973) 178.CrossRefGoogle Scholar
  4. 4.
    P. A. MARSH, A. T. VOET, L. D. PRICE and T. J. MULLENS, ibid. 41 (1968) 344.CrossRefGoogle Scholar
  5. 5.
    D. I. JAMES, W. B. PARASIEWCZ and J. R. PYNE, RPRA Members J. (1975) 29.Google Scholar
  6. 6.
    P. A. MARSH, T. J. MULLENS and L. D. PRICE, Rubber Chem. Technol. 43 (1970) 400.CrossRefGoogle Scholar
  7. 7.
    A. K. SIRKAR, in Proceedings of the International Conference on Structure and Properties, Kharagpur, 2931 December 1980 (1980) p. 193.Google Scholar
  8. 8.
    A. VOET, Rubber Chem. Technol. 54 (1982) 42.CrossRefGoogle Scholar
  9. 9.
    L. J. VAN DER PAUW, Philips Res Rep. 13 (1958) 1.Google Scholar
  10. 10.
    C. WU, S. ASAI, M. SUMITA and K. MIYASAKA, Int. Polym. Sci. Technol. 19 (1992) T/8.Google Scholar
  11. 11.
    C. M. ROLAND and K. L. PENG, Rubber Chem. Technol. 64 (1991) 790.CrossRefGoogle Scholar
  12. 12.
    T. SLUPKOWSKI, Int. Polym. Sci. Technol. 13 (1986) T/80.Google Scholar
  13. 13.
    B. MATTSON and B. STENBERG, Rubber Chem. Technol. 65 (1992) 315.CrossRefGoogle Scholar
  14. 14.
    R. O’BABBIT, “The Vanderbilt rubber handbook” (R. T. Vanderbilt, Norwalk, CT).Google Scholar
  15. 15.
    M. AMIN, G. M. NASR and M. S. SOBHY, J. Mater. Sci. 26 (1991) 2515.CrossRefGoogle Scholar
  16. 16.
    P. K. PRAMANIK, T. N. SAHA and D. K. KHASTGIR, Plast. Rubber Composites Proc. Appl. 15 (1991) 189.Google Scholar
  17. 17.
    F. J. BALTA CALLEJA, T. A. EZQUETVA and D. R. RUEDA, J. Mater. Res. 3 (1984) 165.Google Scholar
  18. 18.
    M. H. POOLY and B. B. B. T. BOONSTRA, Rubber Chem. Technol. 30 (1957) 170.CrossRefGoogle Scholar
  19. 19.
    L. K. VAN BEEK, J. Appl. Polym. Sci. 6 (1962) 24.CrossRefGoogle Scholar
  20. 20.
    R. M. SCARISBRICK, J. Phys. D Applied Phys. 6 (1973) 2098.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • K. P SAU
    • 1
  • T. K CHAKI
    • 1
  • D KHASTGIR
    • 1
  1. 1.Rubber Technology CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations