Journal of Materials Science

, Volume 32, Issue 16, pp 4269–4273 | Cite as

A novel wet process for the preparation of vanadium dioxide thin film

  • S DEKI
  • Y AOI


Thin films of vanadium oxide have been prepared from an aqueous solution system of (V2O5–HF aq.) with the addition of aluminium metal by a novel wet-preparation process which is called liquid-phase deposition (LPD). From X-ray diffraction measurements, the as-deposited film was found to be amorphous and it was then crystallized to V2O5 by calcination at 400 °C under an air flow. In contrast, the monoclinic VO2 phase was obtained when the deposited film was calcined under a nitrogen atmosphere. The deposited film showed excellent adherence to the substrate and was characterized by a homogeneous flat surface. The deposited VO2 film exhibited a reversible semiconductor–metal phase transition around 70 °C and its transition behaviour depended on the way in which the film was prepared.


Vanadium Calcination Transition Behaviour Vanadium Oxide Aluminium Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. NAGAYAMA, H. HONDA and H. KAWAHARA, J. Electrochem. Soc. 135 (1988) 2013.CrossRefGoogle Scholar
  2. 2.
    A. HISHINUMA, T. GODA, M. KITAOKA, S. HAYASHI and H. KAWAHARA, Appl. Surf. Sci. 48/49 (1991) 405.CrossRefGoogle Scholar
  3. 3.
    F. J. MORIN Phy. Rev. Lett. 3 (1959) 34.CrossRefGoogle Scholar
  4. 4.
    A. S. BARKER Jr, H. W. VERLEUR and H. J. GUGGENHEIM, ibid. 17 (1966) 1286.CrossRefGoogle Scholar
  5. 5.
    J. B. GOODENOUGH, J. Solid State Chem. 3 (1971) 490.CrossRefGoogle Scholar
  6. 6.
    C. B. GREENBERG, Thin Solid Films 110 (1983) 73.CrossRefGoogle Scholar
  7. 7.
    G. A. ROZGONYI and D. H. HENSLER, J. Vac. Sci. Technol. 5 (1969) 194.CrossRefGoogle Scholar
  8. 8.
    P. JIN and S. TANEMURA, Jpn J. Appl. Phys. Part 1 33 (1994) 1478.CrossRefGoogle Scholar
  9. 9.
    J. P. DE NATALE, P. J. HOOD and A. B. HARKER, J. Appl. Phys. 66 (1989) 5844.CrossRefGoogle Scholar
  10. 10.
    Y. TAKAHASHI, M. KANAMORI, H. HASHIMOTO, Y. MORITANI and Y. MASUDA, J. Mater. Sci. 24 (1989) 192.CrossRefGoogle Scholar
  11. 11.
    T. MARUYAMA and Y. IKUTA, J. Mater. Sci. 28 (1993) 5073.CrossRefGoogle Scholar
  12. 12.
    G. GUZMAN, R. MORINEAU and J. LIVAGE, Mater. Res. Bull. 29 (1994) 509.CrossRefGoogle Scholar
  13. 13.
    K. R. SPECK, H. S.-W. HU, M. E. SHERWIN and R. S. POTEMBER, Thin Solid Films 165 (1988) 317.CrossRefGoogle Scholar
  14. 14.
    C. H. GRIFFITHS and H. K. EASTWOOD, J. Appl. Phys. 45 (1974) 2201.CrossRefGoogle Scholar
  15. 15.
    L. D. FREDERICKSON Jr and D. M. HAUSEN, Anal. Chem. 35 (1963) 818.CrossRefGoogle Scholar
  16. 16.
    T. R. GILISON, O. F. BIZRI and N. CHEETHAM, J. Chem. Soc. Dalton Trans. 3 (1973) 291.CrossRefGoogle Scholar
  17. 17.
    N. GHARBI, C. SANCHEZ, J. LIVAGE, J. LEMERLE, L. NÉJEM and J. LEFEBVRE, Inorg. Chem. 21 (1982) 2758.CrossRefGoogle Scholar
  18. 18.
    C. J. BALLHAUSEN and H. B. GRAY, Inorg. Chem. 1 (1962) 111.CrossRefGoogle Scholar
  19. 19.
    A. R. BEGISHEV, G. B. GALIEV, A. S. IGNAT’EV, V. G. MOKEROV and V. G. POSHIN, Sov. Phys. Solid State 20 (1978) 951.Google Scholar
  20. 20.
    C. N. BERGLUND and A. JAYARAMAN, Phys. Rev. 185 (1969) 1034.CrossRefGoogle Scholar
  21. 21.
    N. KIMIZUKA, M. ISHII, I. KAWADA, M. SAEKI and M. NAKAHIRA, J. Solid State Chem. 9 (1974) 69.CrossRefGoogle Scholar
  22. 22.
    M. FUKUMA, S. ZEMBUTSU and S. MIYAZAWA, Appl. Opt. 22 (1983) 265.CrossRefGoogle Scholar
  23. 23.
    C. N. BERGLUND and H. J. GUGGENHEIM, Phys. Rev. 185 (1969) 1022.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • S DEKI
    • 1
  • Y AOI
  1. 1.Department of Chemical Science and Engineering, Faculty of EngineeringKobe UniversityRokkodai-cho, Nada-ku KobeJapan

Personalised recommendations