Advertisement

Journal of Biomolecular NMR

, Volume 9, Issue 2, pp 151–166 | Cite as

Automated probabilistic method for assigning backbone resonances of (13C,15N)-labeled proteins

  • Jonathan A. Lukin
  • Andrew P. Gove
  • Sarosh N. Talukdar
  • Chien Ho
Article

Abstract

We present a computer algorithm for the automated assignment of polypeptide backbone and13Cβ resonances of a protein of known primary sequence. Input to the algorithm consistsof cross peaks from several 3D NMR experiments: HNCA, HN(CA)CO, HN(CA)HA,HNCACB, COCAH, HCA(CO)N, HNCO, HN(CO)CA, HN(COCA)HA, and CBCA(CO)NH.Data from these experiments performed on glutamine-binding protein are analyzed statisticallyusing Bayes' theorem to yield objective probability scoring functions for matching chemicalshifts. Such scoring is used in the first stage of the algorithm to combine cross peaks fromthe first five experiments to form intraresidue segments of chemical shifts{Ni,HiN,Ciα,Ciβ,C′i}, while the latter five are combined into interresiduesegments {Ciα,Ciβ,C′i,Ni+1,HNi+1}. Given a tentative assignment of segments,the second stage of the procedure calculates probability scores based on the likelihood ofmatching the chemical shifts of each segment with (i) overlapping segments; and (ii) chemicalshift distributions of the underlying amino acid type (and secondary structure, if known). Thisjoint probability is maximized by rearranging segments using a simulated annealing program,optimized for efficiency. The automated assignment program was tested using CBCANH andCBCA(CO)NH cross peaks of the two previously assigned proteins, calmodulin and CheA.The agreement between the results of our method and the published assignments wasexcellent. Our algorithm was also applied to the observed cross peaks of glutamine-bindingprotein of Escherichia coli, yielding an assignment in excellent agreement with that obtainedby time-consuming, manual methods. The chemical shift assignment procedure described hereshould be most useful for NMR studies of large proteins, which are now feasible with the useof pulsed-field gradients and random partial deuteration of samples.

Three-dimensional NMR Automated polypeptide resonance assignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bax, A., Ikura, M., Kay, L.E., Torchia, D.A. and Tschudin, T. (1990) J. Magn. Reson., 86, 304–318.Google Scholar
  2. Bax, A. and Grzesiek, S. (1993) Acc. Chem. Res., 26, 131–138.Google Scholar
  3. Cieslar, C., Clore, G.M. and Gronenborn, A.M. (1988) J. Magn. Reson., 80, 119–127.Google Scholar
  4. Clore, G.M. and Gronenborn, A.M. (1991) Science, 252, 1390–1399.Google Scholar
  5. Clubb, R.T., Thanabal, V. and Wagner, G. (1992a) J. Biomol. NMR, 2, 203–210.Google Scholar
  6. Clubb, R.T., Thanabal, V. and Wagner, G. (1992b) J. Magn. Reson., 97, 213–217.Google Scholar
  7. Clubb, R.T. and Wagner, G. (1992) J. Biomol. NMR, 2, 389–394.Google Scholar
  8. Dijkstra, K., Kroon, G.J.A., Van Nuland, N.A.J. and Scheek, R.M. (1994) J. Magn. Reson., A107, 102–105.Google Scholar
  9. Eads, C.D. and Kuntz, I.D. (1989) J. Magn. Reson., 82, 467–482.Google Scholar
  10. Eccles, C., Güntert, P., Billeter, M. and Wüthrich, K. (1991) J. Biomol. NMR, 97, 111–130.Google Scholar
  11. Friedrichs, M.S., Mueller, L. and Wittekind, M. (1994) J. Biomol. NMR, 4, 703–726.Google Scholar
  12. Grzesiek, S. and Bax, A. (1992a) J. Magn. Reson., 96, 432–440.Google Scholar
  13. Grzesiek, S. and Bax, A. (1992b) J. Am. Chem. Soc., 114, 6291–6293.Google Scholar
  14. Grzesiek, S. and Bax, A. (1992c) J. Magn. Reson., 99, 201–207.Google Scholar
  15. Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 185–204.Google Scholar
  16. Hing, A.W., Tjandra, N., Cottam, P.F., Schaeffer, J. and Ho, C. (1994) Biochemistry, 33, 8651–8661.Google Scholar
  17. Hsiao, C.-D. (1993) Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA, U.S.A.Google Scholar
  18. Ikura, M., Kay, L.E. and Bax, A. (1990) Biochemistry, 29, 4659–4667.Google Scholar
  19. Kirkpatrick, S., Gelatt Jr., C.D. and Vecchi, M.P. (1983) Science, 220, 671–680.Google Scholar
  20. Kleywegt, G.J., Boelens, R., Cox, M., Llinás, M. and Kaptein, R. (1991) J. Biomol. NMR, 1, 23–47.Google Scholar
  21. Leopold, M.F., Urbauer, J.L. and Wand, A.J. (1994) Mol. Biotechnol., 2, 61–93.Google Scholar
  22. McEvoy, M.M., Zhou, H., Roth, A.F., Lowry, D.F., Morrison, T.B., Kay, L.E. and Dahlquist, F.W. (1995) Biochemistry, 34, 13871–13880.Google Scholar
  23. McEvoy, M.M., Muhandiram, D.R., Kay, L.E. and Dahlquist, F.W. (1996) Biochemistry, 35, 5633–5640.Google Scholar
  24. Meadows, R.P., Olejniczak, E.J. and Fesik, S.W. (1994) J. Biomol. NMR, 4, 79–96.Google Scholar
  25. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953) J. Chem. Phys., 21, 1087–1092.Google Scholar
  26. Morelle, M., Brutscher, B., Simorre, J.-P. and Marion, D. (1995) J. Biomol. NMR, 5, 154–160.Google Scholar
  27. Olejniczak, E.T., Xu, R.X., Petros, A.M. and Fesik, S.W. (1992) J. Magn. Reson., 100, 444–450.Google Scholar
  28. Olson, J.B. and Markley, J.L. (1994) J. Biomol. NMR, 4, 385–410.Google Scholar
  29. Powers, R., Gronenborn, A.M., Clore, G.M. and Bax, A. (1991) J. Magn. Reson., 94, 209–213.Google Scholar
  30. Press, S.J. (1989) Bayesian Statistics: Principles, Models, and Applications, Wiley, New York, NY, U.S.A.Google Scholar
  31. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in Fortran, 2nd ed., Cambridge University Press, Cambridge, U.K., pp. 436–438.Google Scholar
  32. Seavey, B.R., Farr, E.A., Westler, W.M. and Markley, J.L. (1991) J. Biomol. NMR, 1, 217–236.Google Scholar
  33. Shen, Q., Simplaceanu, V., Cottam, P.F. and Ho, C. (1989a) J. Mol. Biol., 210, 849–857.Google Scholar
  34. Shen, Q., Simplaceanu, V., Cottam, P.F., Wu, J.-L., Hong, J.-S. and Ho, C. (1989b) J. Mol. Biol., 210, 859–867.Google Scholar
  35. Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490–5492.Google Scholar
  36. Tjandra, N., Simplaceanu, V., Cottam, P.F. and Ho, C. (1992) J. Biomol. NMR, 2, 149–160.Google Scholar
  37. Tjandra, N. (1993) Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, U.S.A.Google Scholar
  38. Tjandra, N., Kuboniwa, H., Ren, H. and Bax, A. (1995) Eur. J. Biochem., 230, 1014–1024.Google Scholar
  39. Van de Ven, F.J.M. (1990) J. Magn. Reson., 86, 633–644.Google Scholar
  40. Weber, P.L., Malikayil, J.A. and Mueller, L. (1988) J. Magn. Reson., 82, 419–426.Google Scholar
  41. Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311–333.Google Scholar
  42. Wishart, D.S. and Sykes, B.D. (1994) Methods Enzymol., 23 9, 363–392.Google Scholar
  43. Wishart, D.S., Bigham, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995) J. Biomol. NMR, 6, 135–140.Google Scholar
  44. Wittekind, M. and Mueller, L. (1993) J. Magn. Reson., B101, 201–205.Google Scholar
  45. Xu, J., Straus, S.K., Sanctuary, B.C. and Trimble, L. (1994) J. Magn. Reson., B103, 53–58.Google Scholar
  46. Yu, J., Tjandra, N., Simplaceanu, V., Cottam, P.F., Lukin, J.A. and Ho, C. (1995) Biophys. J., 68, 420.Google Scholar
  47. Yu, J., Simplaceanu, V., Tjandra, N.L., Cottam, P.F., Lukin, J.A. and Ho, C. (1997) J. Biomol. NMR, 9, 167–180.Google Scholar
  48. Zimmerman, D.E. and Montelione, G.T. (1995) Curr. Opin. Struct. Biol., 5, 664–673.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Jonathan A. Lukin
    • 1
  • Andrew P. Gove
    • 2
  • Sarosh N. Talukdar
    • 2
  • Chien Ho
    • 1
  1. 1.Department of Biological SciencesCarnegie Mellon UniversityPittsburghU.S.A
  2. 2.Robotics InstituteCarnegie Mellon UniversityPittsburghU.S.A

Personalised recommendations