Advertisement

Journal of Materials Science

, Volume 32, Issue 21, pp 5669–5677 | Cite as

Studies of crystallization kinetics of Fe40Ni40P14B6 and Fe80B20 metallic glasses under non-isothermal conditions

  • V. I TKATCH
  • A. I LIMANOVSKII
  • V. YU KAMENEVA
Article

Abstract

A model for the glass crystallization at constant rate heating is presented. Based on the model a technique for determination of the constants involved in the classical equations for the rates of homogeneous nucleation and linear crystal growth is derived. The effect of the heating rate (in the wide range from 2×10-2 to 16 K s-1) on the temperature of crystallization as well as on the average grain size in fully crystallized specimens of Fe40Ni40P14B6 and Fe80B20 metallic glasses has been studied. The values of the interface diffusion coefficient, the rates of nucleation and growth and the volume density of quenched-in nuclei deduced in the present study are in good agreement with those derived from direct observations. It has been confirmed that crystallization of Fe80B20 occurs mainly by the three-dimensional growth of the pre-existing crystallites while the Avrami exponent for the Fe40Ni40P14B6 glass exceeds 4 implying non-steady-state nucleation. It has been demonstrated that the proposed model allows one to generalize the isothermal and non-isothermal kinetic crystallization curves.

Keywords

Crystallization Metallic Glass Amorphous Alloy Kinetic Curf Crystallization Kinetic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. KÖSTER and U. HEROLD, in “Metallic glasses”, edited by H.-J. Güntherodt and H. Beck (Springer, Berlin, 1981) p. 225.Google Scholar
  2. 2.
    M. G. SCOTT, in “Amorphous metallic alloys” edited by Fluborsky (Butterworth, Amsterdam, 1983) p. 169.Google Scholar
  3. 3.
    A. L. GREER, Mater. Sci. Engng A179 A180 (1994) 41.CrossRefGoogle Scholar
  4. 4.
    H. YINNON and D. R. UHLMANN, J. Non-Cryst. Solids 54 (1983) 253.CrossRefGoogle Scholar
  5. 5.
    T. KEMENY and J. SESTAK, Thermochim. Acta 110 (1987) 113.CrossRefGoogle Scholar
  6. 6.
    V. P. NABEREZHNYKH, V. I. TKATCH, A. I. LIMANOVSKII, L. V. KUKSA and V. Yu. KAMENEVA, Fiz. Metall. Metalloved. 66 (1988) 169.Google Scholar
  7. 7.
    V. P. NABEREZHNYKH, V. I. TKATCH, A. I. LIMANOVSKII and V. Yu. KAMENEVA, ibid. 2 (1991) 157.Google Scholar
  8. 8.
    A. L. GREER, Acta Metall. 30 (1982) 171.CrossRefGoogle Scholar
  9. 9.
    C. V. THOMPSON, A. L. GREER and F. SPAEPEN, ibid. 34 (1983) 1883.CrossRefGoogle Scholar
  10. 10.
    A. L. GREER, in Proceedings of the Fifth International Conference on Rapidly Quenched Metals, edited by S. Steeb and H. Warlimont (Elsevier, Amsterdam, 1985) p. 215.CrossRefGoogle Scholar
  11. 11.
    J. WANG, Sh. WEI, B. DING and Sh. LI, in Proceedings of the Fourth International Conference on Rapidly Quenched Metals (Japan Institute of Metals, Sendai, 1982) p. 731.Google Scholar
  12. 12.
    K. RUSSEV, S. BUDUROV and L. ANESTIEV, in Proceedings of the Fifth International Conference on Rapidly Quenched Metals, edited by S. Steeb and H. Wasliment (Elsevier, Amsterdam, 1985) p. 283.CrossRefGoogle Scholar
  13. 13.
    D. G. MORRIS, Acta Metall. 29 (1981) 1213.CrossRefGoogle Scholar
  14. 14.
    C. ANTONIONE, L. BATTEZZATI, A. LUCCI, G. RIONTINO and G. VENTURELLO, Scripta Metall. 12 (1978) 1011.CrossRefGoogle Scholar
  15. 15.
    M. G. SCOTT, J. Mater. Sci. 13 (1978) 291.CrossRefGoogle Scholar
  16. 16.
    P. M. ANDERSON and A. E. LORD, J. Non-Cryst. Solids 37 (1980) 219.CrossRefGoogle Scholar
  17. 17.
    H.-W. BERGMANN, H. U. FRITSH and G. HUNGER, J. Mater. Sci. 16 (1981) 1933.Google Scholar
  18. 18.
    Y. LIMOGE and A. BARBU, in Proceedings of the Fourth International Conference on Rapidly Quenched Metals (Japan Institute of Metals, Sendai, 1982) p. 739.Google Scholar
  19. 19.
    D. G. MORRIS, Scripta Metall. 16 (1982) 585.CrossRefGoogle Scholar
  20. 20.
    U. KÖSTER and U. HEROLD, in Proceedings of the Fifth International Conference in Rapidly Quenched Metals, edited by S. Steeb and H. Wasliment (Elsevier, Amsterdam, 1985) p. 717.Google Scholar
  21. 21.
    A. N. KOLMOGOROV, Izv. Akad. Nauk USSR, Ser. Matem. 1 (1937) 355.Google Scholar
  22. 22.
    W. A. JOHNSON and K. F. MEHL, Trans. AIME 135 (1939) 416.Google Scholar
  23. 23.
    M. AVRAMI, J. Chem. Phys. 7 (1939) 1103.CrossRefGoogle Scholar
  24. 24.
    Idem, ibid., 8 (1940) 212.Google Scholar
  25. 25.
    Idem, ibid., 9 (1941) 177.Google Scholar
  26. 26.
    J. W. CHRISTIAN, “The theory of transformations in metals and alloys” (Pergamon, New York, 2nd Edn, 1975).Google Scholar
  27. 27.
    D. R. UHLMANN, J. Non-Cryst. Solids 7 (1972) 337.CrossRefGoogle Scholar
  28. 28.
    M. A. ABDEL-RAHIM, A. Y. ABDEL-LATIF, A. EL-KORASHY and G. A. MOHAMED, J. Mater. Sci. 30 (1995) 5737.CrossRefGoogle Scholar
  29. 29.
    H. G. KISSINGER, J. Res. Natl Bur. Stand. 57 (1956) 217.CrossRefGoogle Scholar
  30. 30.
    C. V. THOMPSON and F. SPAEPEN, Acta Metall. 27 (1979) 1855.CrossRefGoogle Scholar
  31. 31.
    H. J. FECHT, Mater. Sci. Engng A133 (1991) 443.CrossRefGoogle Scholar
  32. 32.
    F. SPAEPEN and R. B. MEYER, Scripta Metall. 10 (1976) 37.CrossRefGoogle Scholar
  33. 33.
    P. F. JAMES, Phys. Chem. Glasses 115 (1974) 95.Google Scholar
  34. 34.
    P. KASHCHIEV, Surf. Sci. 14 (1969) 209.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • V. I TKATCH
    • 1
  • A. I LIMANOVSKII
    • 1
  • V. YU KAMENEVA
    • 1
  1. 1.Physics and Engineering InstituteNational Ukrainian Academy of SciencesDonetskUkraine

Personalised recommendations