Journal of Materials Science

, Volume 32, Issue 2, pp 317–325 | Cite as

Thermal shock behaviour of unidirectional silicon carbide fibre reinforced calcium aluminosilicate

  • P. A SMITH


Unidirectional silicon carbide fibre-reinforced calcium aluminosilicate (CAS) has been subjected to a variety of thermal regimes. Microscopy has been used to assess the degree of matrix damage. Thermal shock induced matrix cracking was first seen on the end faces of the composite, perpendicular to the fibre direction at a temperature differential of 400°C. At more severe thermal shocks the next damage was observed on faces parallel to the fibre direction in the form of cracking in the matrix perpendicular to the fibre direction. Matrix cracking damage increased, initially, with increasing severity of thermal shock, but then became less extensive at the highest temperature differentials (800°C) used. Thermal shock-induced crack densities were correlated with literature data for cracking under quasi-static loading using a simple thermal shock analysis incorporating a stress reduction factor. The suitability of applying a modified Aveston, Cooper and Kelly (ACK) model [1] to predict critical temperature differentials for matrix cracking onset in the unidirectional composite has also been tested. The method was found to be valid for the unidirectional material providing that some key parameters were determined independently.


Critical Temperature Thermal Shock Thermal Regime Stress Reduction Fibre Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Aveston, G. A. Cooper and A. Kelly, in Proceedings of The National Physical Laboratory (IPC Science and Technology Press Ltd, London 1971), Paper 2, pp. 15–25.Google Scholar
  2. 2.
    D. B. Marshall and A. G. Evans, J. Amer. Ceram. Soc. 68 (1985) 225.Google Scholar
  3. 3.
    K. M. Prewo, J. Mater. Sci. 21 (1986) 3590.Google Scholar
  4. 4.
    A. G. Evans and D. B. Marshall, Acta. Metall. 37 (1989) 2567.Google Scholar
  5. 5.
    R. Y. Kim and N. J. Pagano, J. Amer. Ceram. Soc. 74 (1991) 1082.Google Scholar
  6. 6.
    D. S. Beyerle, S. M. Spearing, F. W. Zok and A. G. Evans, ibid. 75 (1992) 2719.Google Scholar
  7. 7.
    A. W. Pryce and P. A. Smith, J. Mater. Sci. 27 (1992) 2695.Google Scholar
  8. 8.
    idem, Acta Metall. Mater. 41 (1993) 1269.Google Scholar
  9. 9.
    S. M. Spearing, F. W. Zok and A. G. Evans, J. Amer. Ceram. Soc. 77 (1994) 562Google Scholar
  10. 10.
    R. F. Cooper and K. Chyung, J. Mater. Sci. 22 (1987) 3148.Google Scholar
  11. 11.
    R. J. Kerans, R. S. Hay, N. J. Pagano and T. A. Parthasarathy, Ceram Bull 68 (1989) 429.Google Scholar
  12. 12.
    E. Bischoff, M. RÜhle, O. Sbaizero and A. G. Evans, J. Amer. Ceram. Soc. 72 (1989) 741.Google Scholar
  13. 13.
    M. H. Lewis and V. S. R. Murthy, Comp. Sci. and Tech 42 (1991) 221.Google Scholar
  14. 14.
    S. M. Bleay, V. D. Scott, B. Harris, R. G. Cooke and F. A. Habib, J. Mater. Sci. 27 (1992) 2811.Google Scholar
  15. 15.
    Y. Kagawa, N. Kurosawa and T. Kishi, ibid. 28 (1993) 735.Google Scholar
  16. 16.
    J. J. Brennan and K. M. Prewo, ibid. 17 (1982) 2371.Google Scholar
  17. 17.
    T. Mah, M. G. Mendiratta, A. P. Katz, R. Ruh and K. S. Mazdiyasni, J. Amer. Ceram. Soc. 68 (1985) C248.Google Scholar
  18. 18.
    E. Y. Luh and A. G. Evans, ibid. 70 (1987) 466.Google Scholar
  19. 19.
    M. D. Thouless, O. Sbaizero, L. S. Sigl and A. G. Evans, ibid. 72 (1989) 525.Google Scholar
  20. 20.
    M. W. Pharoah, A. M. Daniel and M. H. Lewis, J. Mater. Sci. Lett. 12 (1993) 998.Google Scholar
  21. 21.
    K. P. Plucknett and M. H. Lewis, ibid. 14 (1995) 1223.Google Scholar
  22. 22.
    R. C. Wetherhold and L. P. Zawada, J. Amer. Ceram. Soc. 74 (1991) 1997.Google Scholar
  23. 23.
    W. R. Buessem, ibid. 38 (1955) 15.Google Scholar
  24. 24.
    D. P. H. Hasselman, ibid. 53 (1970) 490.Google Scholar
  25. 25.
    J. P. Singh, Y. Tree and D. P. H. Hasselman, J. Mater. Sci. 16 (1981) 2109.Google Scholar
  26. 26.
    C. M. A. Davies, B. Harris and R. G. Cooke, Composites 24 (1993) 141.Google Scholar
  27. 27.
    R. W. Davidge “Mechanical Behaviour of Ceramics” (Camb. Univ. Press, Cambridge 1979).Google Scholar
  28. 28.
    K. L. Powell, P. A. Smithand J. A. Yeomans, Compos Sci and Tech 47 (1993) 359.Google Scholar
  29. 29.
    E. Lara-Curzio and M. K. Ferber, J. Mater. Sci. 29 (1994) 6152.Google Scholar
  30. 30.
    M. J. Blissett Ph.D thesis, University of Surrey, (1995)Google Scholar
  31. 31.
    P. Chantikul, G. R. Anstis, B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc. 64 (1981) 539.Google Scholar
  32. 32.
    G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, ibid. 64 (1981) 533.Google Scholar
  33. 33.
    A. S. Kobayashi, M. Zii and L. R. Hall, Int. J. Fract. Mech. 1 (1965) 81.Google Scholar
  34. 34.
    W. A. Curtin, Acta. Metall. Mater. 41 (1993) 1369.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
  • P. A SMITH
    • 1
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of SurreyGuildford SurreyUK

Personalised recommendations