Urban Ecosystems

, Volume 1, Issue 4, pp 201–216 | Cite as

Methods for spatial and temporal land use and land cover assessment for urban ecosystems and application in the greater Baltimore-Chesapeake region

  • Timothy W. Foresman
  • Steward T. A. Pickett
  • Wayne C. Zipperer


Understanding contemporary urban landscapes requires multiple sets of spatially and temporally compatible data that can integrate historical land use patterns and disturbances to land cover. This paper presents three principal methods: (1) core analysis; (2) historic mapping; and (3) gradient analysis, to link spatial and temporal data for urban ecosystems and applies their use in the Baltimore-Chesapeake region. Paleoecological evidence derived from the geochronology of sediment cores provides data on long-term as well as recent changes in vegetative land cover. This information, combined with contemporary vegetation maps, provides a baseline for conducting trend analyses to evaluate urbanization of the landscape. A 200-year historical land use database created from historical maps, census data, and remotely sensed data provides a spatial framework for investigating human impacts on the region. A geographic information system (GIS) integrates core analyses with historic data on land use change to yield a comprehensive land use and land cover framework and rates of change. These data resources establish the regional foundation for investigating the ecological components of an urban ecosystem. Urban-rural gradient analyses and patch analyses are proposed as the most appropriate methods for studying the urban ecosystem as they link ecological and social patterns and processes for varying degrees of urbanization.

land use land cover urbanization urban-rural gradient paleoecology GIS historical mapping Baltimore-Chesapeake region history 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acevedo, W., Foresman, T. W., and Buchanan, J. T. (1996) Origins and philosophy of building a temporal database to examine human transformation processes. Proceeding ASPRS/ACSM Annual Convention and Exhibition, Baltimore, MD. 1, 149–161.Google Scholar
  2. Allen, T. F. H. and Hoekstra, T. W. (1992) Toward a unified ecology. Columbia University Press, New York.Google Scholar
  3. Anderson, J. R., Hardy, E. E., Roach, J. T. and Witmer, R. E. (1976) A land use and land cover classification system for use with remote sensor data. Geological Survey Professional Paper 964, USGS, Reston, VA.Google Scholar
  4. Band, L. E. and Moore, I. D. (1995) Scale” landscape attributes and geographical information systems. Hydrol.Proc. 9, 401–422.Google Scholar
  5. Besley, F. W. (1916) The forests of Maryland. Maryland State Board of Forestry, Baltimore, MD. 152 pp.Google Scholar
  6. Blood, E. (1994) Prospects for the development of integrated regional models. In Integrated regional models” interactions between humans and their environment (P. M. Groffman and G. E. Likens, eds.), pp. 145–153. Chapman and Hall, New York.Google Scholar
  7. Bormann, F. H., Balmori, D. and Geballe, G. T. (1993) Redesigning the American lawn” a search for environmental harmony. Yale University Press, New Haven, CT.Google Scholar
  8. Brondizio, E., Moran, E., Mausel, P. and Wu, Y. (1996) Land cover in the Amazon estuary—linking of the thematic mapping with botanical and historical data. Photogramm.Engin.Rem.Sens. 62(8), 921–929.Google Scholar
  9. Brush, G. S. (1989) Rates and patterns of estuary sediment accumulation. Limnol.Oceanogr. 34(7), 1235–1246.Google Scholar
  10. Brush, G. S. (1994) The Chesapeake Bay estuary system. In The changing global environment (N. Roberts, ed.) p. 297–416. Blackwell, Oxford, UK.Google Scholar
  11. Brush, G. S. (1997) History and impact of human activities on Chesapeake Bay. In Ecosystem function and human activities (R. D. Simpson and N. L. Christensen, Jr., eds.), pp. 125–145. Chapman & Hall, NY.Google Scholar
  12. Brush, G. S., Lenk, C. and Smith, J. (1980) The natural forest of Maryland” an explanation of the vegetation map of Maryland. Ecol.Monogr. 50(1), 77–92.Google Scholar
  13. Clark, J. S. (1990) Twentieth-century change, fire suppression, and forest production and decomposition in north-western Minnesota. Can.J.Forest.Res. 20, 219–232.Google Scholar
  14. Cooper, S. R. and Brush, G. S. (1991) Long-term history of Chesapeake Bay anoxia. Science 254, 992–996.Google Scholar
  15. Cowen, D. J., Jensen, J. R., Bresnahan, P. J., Ehler, G. B., Graves, D., Huang, X., Wiesner, C. and Mackey, H. E. (1995) The design and implementation of an integrated geographic information system for environmental applications. Photogramm.Engin.Rem.Sens. 61(11), 1393–1404.Google Scholar
  16. Csuros, M. (1994) Environmental sampling and analysis for technicians. Lewis Pub., Boca Raton, FL.Google Scholar
  17. Dobson, J. E., Bright, E. A., Ferguson, R. L., Field, D. W., Wood, L. L., Haddad, K. D., Iredale III, H., Jensen, J. R., Klemas, V. V., Orth, R. J. and Thomas, J. P. (1995) NOAA coastal change analysis program (C-CAP)” guidance for regional implementation. NOAA Technical Report NMFS 123, 92 pp.Google Scholar
  18. Earthmap Design Study and Implementation Plan. (1995) Global Environment and Technology Foundation. Ann-andale, VA.Google Scholar
  19. Estes, J. E. and Mooneyhan, D. W. (1994) Of maps and myths. Photogramm.Engin.Rem.Sens. 60(5), 517–524.Google Scholar
  20. Farmer, D. G. and Rycoft, M. J. R. (1991) Computer modeling in the environmental sciences. Clarendon Press, Oxford.Google Scholar
  21. Foresman, T. W., Wiggins, H. V., Porter, D. L., Masuoka, P. and Acevedo, W. (1996) Design and documentation of a Baltimore-Washington regional spatial database testbed for environmental model calibration and verification. Proceeding Third International Conference/Workshop on Integrating Geographical Information and Environ-mental Modeling. Santa Fe, NM.Google Scholar
  22. Forman, R. T. T. (1995) Land mosaics” the ecology of landscape and regions. Cambridge University Press, New York.Google Scholar
  23. Frey, H. T. (1984) Expansion of urban area in the United States” 1960–1980. U.S.D.A.Economic Research Service Staff Report. No. AGS830615. Washington, D.C.Google Scholar
  24. Green, R. G. and Cruise, J. F. (1995) Development of a geographic information system for urban watershed analysis. Photogramm.Engin.Rem.Sens. 62(7), 863–870.Google Scholar
  25. Grove, J. M. (1996) The relationship between patterns and processes of social stratification and vegetation of an urban-rural watershed. Ph.D.Dissertation, Yale University, New Haven, CT.Google Scholar
  26. Henderson-Sellers, A., Wilson, M. F., Thomas, G. and Dickson, R. E. (1986) Current global land-surface data sets for use in climate-related studies. NCAR Technical Note 272 + STR. Boulder, CO. 110 pp.Google Scholar
  27. Kirtland, D., Gaydos, L., Clarke, K. C., De Cola, L., Acevedo, W. and Bell, C. (1994) An analysis of human induced land transformation in the San Francisco Bay/Sacramento area. World Res.Rev. 6(2), 206–217.Google Scholar
  28. Likens, G. E. (1991) Human-accelerated environmental change. BioScience 41, 130.Google Scholar
  29. Loundsbury, J. F. and Aldrich, F. T. (1986) Introduction to geographic field methods and techniques. MacMillan Publishing Co., New York.Google Scholar
  30. Loveland, T. R., Merchant, J. W., Ohlen, E. O. and Brown, J. F. (1991) Development of a land-cover characteristics database for the conterminous U.S. Photogramm.Engin.Rem.Sens. 57(11), 1453–1463.Google Scholar
  31. Masuoka, P., Foresman, T. W., Fifer, S., Acevedo, W., Clark, S., Crawford, T. and Buchanan, T. (1995) Visualization techniques for the analysis of Baltimore regional GIS data. Proceedings GIS/LIS O 95, Nashville, TN 2, 704–712.Google Scholar
  32. McDonnell, M. J. and Pickett, S. T. A. (1990) Ecosystem structure and function along urban-rural gradients” an unexploited opportunity in ecology. Ecology 71, 1232–1237.Google Scholar
  33. McDonnell, M. J., Pickett, S. T. A., Groffman, P., Bohlen, P., Pouyat, R. V., Zipperer, W. C., Parmelee, R. W., Carreiro, M. and Medley, K. (1997) Ecosystem processes along an urban-to-rural gradient. Urban Ecosystems 1, 21–36.Google Scholar
  34. Meyer, W. B. (1996) Human impact on the earth. Cambridge University Press, New York.Google Scholar
  35. Mueller-Dombois, D. and Ellenberg, H. (1974) Aims and methods of vegetation ecology. John Wiley and Sons, New York.Google Scholar
  36. National Center for Resource Innovations (NCRI). (1996) Report on urban expansion and land conversion, 1980–1990. NCRI Chesapeake, Inc., Rosslyn, VA.Google Scholar
  37. Natural Resources Conservation Service (NRCS). (1996) Natural resources inventory. Natural Resources Conservation Service, USDA, Washington, D.C.Google Scholar
  38. National Science and Technology Council (NSTC). (1995) Our changing planet; the FY 1995 change research program. A Report by the Subcommittee on Global Change Research, committee on Environment and Natural Resources Research of the National Science Technology Council.Google Scholar
  39. NSDI. (1994) Executive Order 12906, Federal Register 59(71), 17671–17674.Google Scholar
  40. Oreskes, N., Shrader-Frechetts, K. and Belitz, K. (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263, 641–646.Google Scholar
  41. Pacala, S. W. (1994) An ecologist's encounter with some models in the social sciences. In Integrated regional models” interactions between humans and their environment (P. M. Groffman and G. E. Likens, eds.), pp. 35–49. Chapman and Hall, New York.Google Scholar
  42. Peuquet, D. J. (1994) It's about time” a conceptual framework for the representation of temporal dynamics in geographic information systems. Annu.Assoc.Am.Geogr. 84(3), 44–461.Google Scholar
  43. Pickett, S. T. A., Burke, I. C., Dale, V. H., Gosz, J. R., Lee, R. G., Pacala, S. W. and Shachak, M. (1994) Integrated models of forested regions. In Integrated regional models” interactions between humans and their environment (P. M. Groffman and G. E. Likens, eds.), pp. 120–142. Chapman and Hall, New York.Google Scholar
  44. Pickett, S. T. A. and Cadenasso, M. L. (1995) Landscape ecology” spatial heterogeneity in ecological systems. Science 269, 331–334.Google Scholar
  45. Pickett, S. T. A., Collins, S. L. and Armesto, J. J. (1987) Models, mechanisms and pathways of succession. Bot.Rev. 53, 335–371.Google Scholar
  46. Pickett, S. T. A., Burch, W. R., Jr., Dalton, S. E., Foresman, T. W., Grove, J. M. and Rowntree, R. (1997) A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosystems 1(4), XXX–XXX.Google Scholar
  47. Pouyat, R. V., Parmelee, R. W. and Carreiro, M. M. (1994) Environmental effects of forest soil invertebrate and fungal densities in oak stands along an urban-rural land use gradient. Pedobiologia 38, 385–399.Google Scholar
  48. Schlagel, J. D. and Newton, C. M. (1996) A GIS-based statistical method to analyze spatial change. Photogramm.Engin.Rem.Sens. 62(7), 839–844.Google Scholar
  49. Sharpe, D. M., Stearns, F., Leitner, L. A. and Dorney, J. R. (1986) Fate of natural vegetation during urban devel-opment of rural landscapes in southeastern Wisconsin. Urban Ecol. 9, 267–287.Google Scholar
  50. Shreve, F., Chrysler, M. A., Blodgett, F. H. and Beasley, F. W. (1910) The plant life of Maryland. Maryland Weather Service, Vol. 3, Johns Hopkins University Press, Baltimore, MD. 533 pp.Google Scholar
  51. Skole, D. L. (1994) Data on global landcover change” acquisition, assessment, and analysis. In Changes in land use and land cover” a global perspective (W. B. Meyer and B. L. Turner II, eds.), pp. 437–471. Cambridge University Press, New York.Google Scholar
  52. Skole, D. and Tucker, C. J. (1993) Tropical deforestation and habitat fragmentation in the Amazon” satellite data from 1978 to 1988. Science 260, 1905–1910.Google Scholar
  53. Soule, M. E. and Kohm, K. A. (1989) Research priorities for conservation biology. Island Press, Washington, D.C.Google Scholar
  54. Stetson, C. W. (1956) Washington and his neighbors. Garret and Massie.Google Scholar
  55. Stoms, D. M., Davis, F. W. and Cogan, C. B. (1992) Sensitivity of wildlife habitat models to uncertainties in GIS data. Photogramm.Engin.Rem.Sens. 58(6), 843–850.Google Scholar
  56. Travers, P. J. (1990) “The Patapsco” Baltimore's river. Tidewater Publishers, Centerville, MD. 220 pp.Google Scholar
  57. Tucker, C. J., Townshend, J. R. G. and Goff, T. E. (1985) African landcover classification using satellite data. Science 227, 369–375.Google Scholar
  58. Turner, B. L. and Meyer, W. B. (1994) Global land use and land cover change” an overview. In Changes in land use and land cover” a global perspective (W. B. Meyer and B. L. Turner II, eds.), pp. 1–11. Cambridge University Press, New York.Google Scholar
  59. United States Geological Survey (USGS). (1996) U.S. Federal Region III Land Cover Set. U.S. Geological Survey, EROS Data Center, Souix Falls, SD.Google Scholar
  60. Yuan, S. (1995) Postglacial history of vegetation and river channel geomorphology in coastal plain floodplain. Ph.D. Dissertation, Johns Hopkins University, Baltimore, MD. 164 pp.Google Scholar
  61. Vitousek, P. M. (1994) Beyond global warming” ecology land global change. Ecology 75(7), 1861–1876.Google Scholar
  62. Von Eckardt, W. and Gottman, J. (1964). The challenge of megalopolis” a graphic presentation of the urbanized northeastern seaboard of the United States. MacMillan Press, New York.Google Scholar
  63. Westmoreland, S. and Stow, D. A. (1992) Category identification of changed land-use polygons in an integrated image processing/geographic information system. Photogramm.Engin.Rem.Sens. 58(11), 1593–1599.Google Scholar
  64. World Almanac. (1996) Funk and Wagnells Corporation, Mahwah, NJ. 975 pp.Google Scholar
  65. Zipperer, W. C. (1993) Deforestation patterns and their effects on forest patches. Landscape Ecol. 8, 177–184.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Timothy W. Foresman
    • 1
  • Steward T. A. Pickett
    • 2
  • Wayne C. Zipperer
    • 3
  1. 1.Department of GeographyUniversity of Maryland, Baltimore CountyBaltimoreUSA
  2. 2.Institute of Ecosystem StudiesMillbrookUSA
  3. 3.USDA Forest ServiceSyracuseUSA

Personalised recommendations