Journal of Materials Science

, Volume 32, Issue 1, pp 91–97 | Cite as

Reaction and diffusion path of an interface reaction between Cu2O and nickel

Article

Abstract

The interface reaction between Cu2O and nickel has been investigated and the reaction path has been analysed on the chemical potential diagram for undoped and doped samples. The layer sequence of products Cu2O/Cu/NiO/Ni for the undoped sample and that of Cu2O/Cu/NiO/Cu–Ni alloy/Ni for the doped sample was obtained. The reaction and diffusion path was explained on the chemical potential diagram of the Cu–Ni–O system, based on the assumption that a local equilibrium is attained at the interfaces. The doping effect of NiO in Cu2O was ascribed to a higher mobility of copper in NiO phase due to the higher chemical potential of oxygen at the Cu/NiO interface resulting from the higher chemical potential of nickel in Cu2O. When the reaction time becomes longer, it is expected that the reaction and diffusion path will become similar to that of the doped sample. Because the reaction and diffusion path is a function of time and has a non-equilibrium character, it can be represented and reasonably explained on the chemical potential diagram obtained from a thermodynamic treatment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. RAPP, A. EZIS and G. J. YUREK, Metall. Trans. 4 (1973) 1283Google Scholar
  2. 2.
    F. J. J. VAN LOO, Prog. Solid State Chem. 20 (1990) 47.Google Scholar
  3. 3.
    F. J. J. VAN LOO, J. A. VAN BEEK, G. F. BASTIN and R. METSELAAR, Oxid. Metals 22 (1984) 161.Google Scholar
  4. 4.
    M. BACKHAUS-RICOULT, H. SCHMALZRIED and R. J. TARENTO, Ber. Bunsenges. Phys. Chem. 95 (1991) 1593.Google Scholar
  5. 5.
    H. SCHMALZRIED, J. Chem. Soc. Farad. Trans. 86 (1990) 1273.Google Scholar
  6. 6.
    H. YOKOKAWA, T. KAWADA and M. DOKIYA, J. Am. Ceram. Soc. 72 (1989) 2104.Google Scholar
  7. 7.
    H. YOKOKAWA, N. SAKAI, T. KAWADA and M. DOKIYA, J. Electrochem. Soc. 138 (1991) 2719.Google Scholar
  8. 8.
    H. YOKOKAWA, N. SAKAI, T. KAWADA, M. DOKIYA and K. OHTA, ibid. 140 (1993) 3565.Google Scholar
  9. 9.
    M. BACKHAUS-RICOULT, Ber. Bunsenges. Phys. Chem. 90 (1986) 684.Google Scholar
  10. 10.
    C. WAGNER, J. Electrochem. Soc. 103 (1956) 571.Google Scholar
  11. 11.
    P. J. C. VOSTERS, M. A. J. TH. LAHEIJ, F. J. J. VAN LOOANK R. METSELAAR, Oxid. Metals 20 (1983) 147.Google Scholar
  12. 12.
    M. A. J. TH. LAHEIJ, F. J. J. VAN LOO and R. METSELAAR, ibid. 14 (1980) 207.Google Scholar
  13. 13.
    Y.-Z. YOO, K.-C. HSEIEH and Y. A. CHANG, Metall. Trans. 17A (1986) 1104.Google Scholar
  14. 14.
    M. L. NARULA, V. B. TARE and W. L. WORRELL, ibid. 14B (1983) 673.Google Scholar
  15. 15.
    R. GUAN, H. HASHIMOTO and K. H. KUO, Acta Crystallogr. B46 (1990) 103.Google Scholar
  16. 16.
    J. S. KIRKALDY and D. J. YOUNG, “Diffusion in the Condensed State” (Institute of Metals, London, 1987).Google Scholar
  17. 17.
    J. S. KIRKALDY, Can. J. Phys. 36 (1958) 907.Google Scholar
  18. 18.
    Idem, ibid. 36 (1958) 917.Google Scholar
  19. 19.
    N. L. PETERSON and C. L. WILEY, J. Phys. Chem. Solids 46 (1985) 43.Google Scholar
  20. 20.
    K. HOSHINO and N. L. PETERSON, ibid. 45 (1984) 963.Google Scholar
  21. 21.
    C. MONTY, Rad. Effects 74 (1983) 29.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • H INABA
    • 1
  1. 1.Technical Research LaboratoriesKawasaki Steel CorporationChuo-Ku ChibaJapan

Personalised recommendations