Journal of Neurocytology

, Volume 26, Issue 2, pp 77–82

PK (‘peripheral benzodiazepine’) – binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK 11195 binding to activated microglia

  • R. B Banati
  • R Myers
  • G. W Kreutzberg


The isoquinoline PK 11195 has been suggested as a marker of glial pathology in the lesioned brain. The aim of the present study is to clarify the precise cellular location of its binding site in the central nervous system. Here, we report that in the facial nucleus after facial nerve axotomy–a lesion causing a retrograde neuronal reaction without nerve cell death while keeping the blood–brain barrier intact–activated microglia are the predominant source of lesion-induced increases of PK 11195 binding. Likewise, increased PK 11195 binding is seen in the gracile nucleus after anterograde neuronal injury following sciatic nerve transection. The peak of PK 11195 binding, using the single isomer R-PK 11195, was observed 4 days after the peripheral nerve lesion, consistent with the well-known time course of microglial activation. Photoemulsion microautoradiography confirmed the restriction of PK 11195 binding to activated microglia. The increase of PK 11195 binding in the facial nucleus seen after selective cell death of facial motoneurons by retrograde suicide transport of toxic ricin, a lesion that is accompanied by the rapid transformation of microglia into phagocytes, was no higher than that seen following axotomy. This suggests that the full transformation of microglia into parenchymal phagocytes is not necessary to reach maximal levels of PK 11195 binding. PK 11195, therefore, is a well-suited marker to detect microglial activation in areas of subtle brain pathology, where neither a disturbance of the blood–brain barrier function nor the presence of macrophages and inflammatory cells indicate an on-going disease process.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anholt, R. R., Pedersen, P. L., Desouza, E. B. & Snyder, S. H. (1986) The peripheral-type benzodiazepine receptor. Localisation to the mitochondrial outer membrane. Journal of Biological Chemistry 261, 776–83.Google Scholar
  2. Banati, R. B., Hoppe, D., Gottmann, K., Kreutzberg, G. W. & Kettenmann, H. (1991a) A subpopulation of bone marrow-derived macrophage-like cells shares a unique ion channel pattern with microglia. Journal of Neuroience Research 30, 593–60.Google Scholar
  3. Banati, R. B., Rothe, G., Valet, G. & Kreutzberg, G. W. (1991b) Respiratory burst in brain macrophages: a flow cytometric study on cultured microglia. Neuropathology and Applied Neurobiology 17, 223–30.Google Scholar
  4. Banati, R. B., Gehrmann, J., Czech, C., MÖnning, U., Jones, L. L., KÖnig, G., Beyreuther, K. & Kreutzberg, G. W. (1993a) Early and rapid de novo-synthesis of Alzheimer bA4-amyloid precursor protein (APP) in activated microglia. Glia 9, 199–210.Google Scholar
  5. Banati, R. B., Gehrmann, J., Schubert, P. & Kreutzberg, G. W. (1993b) Cytotoxicity of microglia. Glia 7, 111–18.Google Scholar
  6. Banati, R. B., Rothe, G., Valet, G. & Kreutzberg, G. W. (1993c) Detection of lysosomal proteinases in microglia: flow cytometric measurement and histochemical detection of cathepsin B and L. Glia 7, 183–91.Google Scholar
  7. Benavides, J., Cornu, P., Dennis, T., Dubois, A., Hauw, J.-J., MacKenzie, E. T., Sazdovitch, V. & Scatton, B. (1988) Imaging of human brain lesions with an w3 site radioligand. Annual of Neurology 24, 708–12.Google Scholar
  8. Bourguinon, J. J. (1993) Endogenous and synthetic ligands of mitochondrial benzodiazepine receptors: structure-affinity relationships. In Peripheral Benzodiazepine Receptors (edited by GIESSEN-CROUSE, E.) pp. 59–82. London: Academic Press.Google Scholar
  9. Brown D. R. Schmidt B. & Kretschmar H. A. (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380 345–7.Google Scholar
  10. Camsonne, R., Crouzel, C., Comar, D., Maziere, M., Prenant, C., Sastre, J., Moulin, M. A. & Syrota, A. (1984) Synthesis of N-(11C) methyl, N-(methyl-1-propyl), (chloro-2-phenyl)-1-isoquinoline carboxamide-3 (PK 11195): a new ligand for peripheral benzodiazepine receptors. Journal of Labelled Compounds and Radiopharmaceuticals 21, 985–91.Google Scholar
  11. Carayon, P., Portier, M., Dussossoy, D., Bord, A., Petitpretre, G., Canat, X., Lefur, G. & Casellas, P. (1996) Involvement of peripheral benzodiazepine receptors in the protection of hematopoietic cells against oxygen radical damage. Blood 87, 3170–8.Google Scholar
  12. Dickson, D. W., Mattiace, L. A., Kure, K., Hutchins, K., Lyman, W. D. & Brosnan, C. F. (1991) Biology of disease: microglia in human disease with an emphasis on acquired immune deficiency syndrome. Laboratory Investigation 64, 135–56.Google Scholar
  13. Dubois, A., Benavides, J., Peny, B., Duverger, D., Fage, D., Gotti, B., MacKenzie, E. T. & Scattopn, B. (1988) Imaging primary and secondary ihaemic and excitotoxic brain lesions. An autoradiographic study of peripheral type benzodiazepine binding sites in the rat and cat. Brain Research 445, 77–90.Google Scholar
  14. Gehrmann, J., Gold, R., Linington, C., Lannesvieira, J., Wekerle, H. & Kreutzberg, G. W. (1992) Spinal cord microglia in experimental allergic neuritis: evidence for fast and remote activation. Laboratory Investigation 67, 100–13.Google Scholar
  15. Graeber, M. B., Tetzlaff, W., Streit, W. J., & Kreutzberg, G. W. (1988) Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy. Neuroience Letters 85, 317–21.Google Scholar
  16. Graeber, M. B., Streit, W. J. & Kreutzberg, G. W. (1989) Identity of ED2-positive perivaular cells in rat brain. Journal of Neuroience 6, 2163–78.Google Scholar
  17. Hertz, L. (1993) Binding characteristics of the receptor and coupling to transport proteins. In Peripheral Benzodiazepine Receptors (edited by GIESSEN-CROUSE, E.) pp. 27–51. London: Academic Press.Google Scholar
  18. Itzhak, Y., Baker, L. & Norenberg (1993) Characterisation of the peripheral-type benzodiazepine receptors in cultured astrocytes labeled with [3H]PK 11195: evidence for multiplicity. Glia 9, 211–18.Google Scholar
  19. Kreutzberg G. W. (1996) Microglia: a sensor for pathological events in the CNS. TINS 19, 312–18.Google Scholar
  20. McGeer, E. G., Singh, E. A. & McGeer, P. L. (1988) Peripheral-type benzodiazepine binding in Alzheimer disease. Alzheimer's Disease and Associated Disorders 2, 331–6.Google Scholar
  21. McLean, I. W. & Nakane, P. K. (1974) Periodate-lysineparaformaldehyde fixative. A new fixative for immunoelectron microscopy. Journal of Histochemical Cytochemistry 22, 1077–83.Google Scholar
  22. Meda, L., Cassatella, M. A., Szendrei, G. I., Otvos, L., Baron, P., Villalba, M., Ferrari, D. & Rossi, F. (1995) Activation of microglial cells by betaamyloid protein and interferon-gamma. Nature 374, 647–50.Google Scholar
  23. MÖnning, U., KÖnig, G., Banati, R. B., Mechler, H., Czech, C., Gehrmann, J., Schreitergasser, U., Masters, C. & Beyreuther, K. (1992) Alzheimer bA4-amyloid precursor in immunecompetent cells. Journal of Biological Chemistry 267, 23950–6.Google Scholar
  24. Myers, R. (1993) Mitochondrial benzodiazepine receptor ligands as indicators of damage in the CNS: their application in positron emission tomography. In Peripheral Benzodiazepine Receptors (edited by GIESSEN-CROUSE, E.) pp. 236–67. London: Academic Press.Google Scholar
  25. Myers, R., Manjil, L. G., Cullen, B. M., Price, G. W., Frackowiak, R. S. J. & Cremer, J. E. (1991a) Macrophage and astrocyte populations in relation to [3H]PK 11195 binding in rat brain cortex following a local ischaemic lesion. J. Cereb. Blood Flow Metab. 11, 314–32.Google Scholar
  26. Myers, R., Manjil, L. G., Cullen, B. M., Price, G. W., Frackowiak, R. S. J. & Cremer, J. E. (1991b) (3H)PK 11195 and the localisation of secondary thalamic lesions following focal ischemia in rat motor cortex. Neuroscience Letters 133, 20–4.Google Scholar
  27. Olson, J. M., Ciliax, B. J., Mancini, W. R. & Young, A. B. (1988) Presence of peripheral-type like binding sites on human erythrocyte membranes. European Journal of Pharmacology 152, 47–53.Google Scholar
  28. Park, C. H., Carboni, E., Wood, P. L. & Gee K. W. (1996) Characterisation of peripheral benzodiazepine type sites in a cultured murine BV-2 microgial cell line. Glia 16, 65–70.Google Scholar
  29. Price, G. W., Ahier, R. G., Hume, S. P., Myers, R., Manjil, L. G., Cremer, J. E., Luthra, S. K., Pascali, c., Pike, V. & Frackowiak, R. S. J. (1990) In vivo binding to peripheral benzodiazepine binding sites in lesioned rat brain: comparison between [3H]PK 11195 and (18F)PK 14105 as markers for neuronal damage. Journal of Neurochemistry 55, 175–85.Google Scholar
  30. Probst, A., Langui, D. & Ulrich, J. (1991) Alzheimer's disease: a description of the structural lesions. Brain Pathology 1, 229–39.Google Scholar
  31. Ramsay, S. C., Weiller, C., Myers, R., Cremer, J. E., Luthra, S. K., Lammertsma, A. A. & Frackowiak, R. S. J.(1992) Monitoring by PET of macrophage accumulation in brain after ischeamic stroke. Lancet 339, 1054–5.Google Scholar
  32. Schoemaker, H., Morelli, M., Deshmukh, P. & Yamamura, H. I. (1982) [3H]Ro5-4864 benzodiazepine binding in the kainate lesioned striatum and Huntington's disease basal ganglia. Brain Research 248, 396–4.Google Scholar
  33. Shah, F., Pike, V. W., Ashworth, S. & McDermott, J. (1994) Synthesis of the enantiomer of [N-methyl-11C]PK11195 and comparison of their behaviours as PK (peripheral benzodiazepine) binding site radioligands in rats. Nuclear Medical Biology 21, 573–81.Google Scholar
  34. Stephenson, D. T., Schober, D. A., Smalstig, E. B., Mincy, R. C., Gehlert, D. R. & Clemens, J. A. (1995) Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. Journal of Neuroience 15 , 5263–74.Google Scholar
  35. Streit, W. J. & Kreutzberg, G. W. (1988) Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. Journal of Comparative Neurology 268, 248–63.Google Scholar
  36. Streit, W. J., Graeber, M. B. & Kreutzberg, G. W. (1988) Functional plasticity of microglia: a review. Glia 1, 301–7.Google Scholar
  37. Yan, S. D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J., Migheli, A., Nawroth, P., Stern, D. & Schmidt, A. M. (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature 382, 685–91.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • R. B Banati
    • 1
  • R Myers
    • 1
  • G. W Kreutzberg
    • 2
  1. 1.MRC Cyclotron Unit, CSC, RPMSHammersmith HospitalLondonUK
  2. 2.Department of NeuromorphologyMax-Planck-Institute of PsychiatryMunichGermany

Personalised recommendations