Advertisement

Journal of Materials Science

, Volume 32, Issue 4, pp 971–977 | Cite as

Acrylonitrile–butadiene–styrene-toughened polysulphone of bisphenol A blends: influence of processing temperature and composition

  • B. E RUIZ DE GAUNA
  • M GAZTELUMENDI
  • J NAZABAL
Article

Abstract

Polysulphone of bisphenol A (PSU)/acrylonitrile–butadiene–styrene (ABS) blends have been obtained by direct injection moulding at different temperatures and for compositions in the PSU-rich range. Direct injection moulding provided a mixing level similar to that of kneading. The blends were almost fully immiscible with the exception of the polybutadiene (PBD) phase where some PSU appeared to be present. Only a very small amount of ABS was required to greatly improve the tracking index of PSU. The mechanical properties, however, were those of a compatible material, and did not depend on the injection temperature. Moreover, with the exception of the ductility, they were in fairly good proportion to the blend composition, and provided the most balanced set of properties at an ABS content near 5%.

Keywords

Ductility Impact Strength Injection Moulding Impact Resistance Impact Specimen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. CHUN, K. S. MAENG and K. S. SUH, J. Mater. Sci. 26 (1991) 5347.CrossRefGoogle Scholar
  2. 2.
    J. I. EGUIAZÁBAL and J. NAZÁBAL, Polym. Eng. Sci. 30 (1990) 527.CrossRefGoogle Scholar
  3. 3.
    W. CHIANG and D. HWUNG, ibid. 27 (1987) 632.CrossRefGoogle Scholar
  4. 4.
    B. S. LOMBARDO, H. KESKKULA and D. R. PAUL, J. Appl. Polym. Sci. 54 (1994) 1697.CrossRefGoogle Scholar
  5. 5.
    M. ISHIKAWA and I. CHIBA, Polymer 31 (1990) 1232.CrossRefGoogle Scholar
  6. 6.
    M. P. LEE, A. HILTNER and E. BAER, Polym. Eng. Sci. 32 (1992) 909.CrossRefGoogle Scholar
  7. 7.
    A. K. KULSHRESHTHA, Polym. Plast. Technol. Eng. 32 (1993) 551.CrossRefGoogle Scholar
  8. 8.
    A. K. GUPTA, A. K. JAIN, B. K. RATNAM and S. N. MAITI, J. Appl. Polym. Sci. 39 (1990) 515.CrossRefGoogle Scholar
  9. 9.
    J. A. BRYDSON, Plastics Materials (Butterworth Scientific, London, 1982).Google Scholar
  10. 10.
    R. ERRO, M. GAZTELUMENDI and J. NAZÁBAL, J. Appl. Polym. Sci. 45 (1992) 339.CrossRefGoogle Scholar
  11. 11.
    T. A. CALLAGHAM, K. TAKAKUWA and D. R. PAUL, Polymer 34 (1993) 3796.CrossRefGoogle Scholar
  12. 12.
    T. G. FOX, Bull. Am. Phys. Soc. 1 (1956) 123.Google Scholar
  13. 13.
    K. J. PASCOE, in Failure of Plastics, edited by W. Brostow and R. D. Corneliussen (Hanser, Munich, 1986) p. 150.Google Scholar
  14. 14.
    S. WU, Polymer 26 (1985) 1855.CrossRefGoogle Scholar
  15. 15.
    Idem, J. Appl. Polym. Sci. 35 (1988) 549.CrossRefGoogle Scholar
  16. 16.
    S. M. LEE, C. H. CHOI and B. K. KIM, Eur. Polym. J. 30 (1994) 993.CrossRefGoogle Scholar
  17. 17.
    B. E. RUIZ DE GAUNA, M. GAZTELUMENDI and J. NAZÁBAL, ibid. in press.Google Scholar
  18. 18.
    A. ARZAK, J. I. EGUIAZÁBAL and J. NAZÁBAL, J. Appl. Polym. Sci. 58 (1995) 653.CrossRefGoogle Scholar
  19. 19.
    J. I. EGUIAZÁBAL and J. NAZÁBAL, Plast. Rubb. Proc. Appl. 14 (1990) 211.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • B. E RUIZ DE GAUNA
    • 1
  • M GAZTELUMENDI
    • 1
  • J NAZABAL
    • 1
  1. 1.Departamento de Ciencia y Tecnologia de Polimeros, Facultad de Quimica (E.H.U./U.P.V.)San Sebastian, Basque CountrySpain

Personalised recommendations