Journal of Materials Science

, Volume 32, Issue 4, pp 957–964 | Cite as

Effect of interlayer anions on the physicochemical properties of zinc–aluminium hydrotalcite-like compounds

  • S VELU
  • C. S SWAMY


Zinc–aluminium hydrotalcite-like compounds (ZnAlAn-–HT) with a Zn/Al atomic ratio 2.0 and An- = CO2-3, Cl-, NO-3 and SO2-4, were synthesized by coprecipitation under low supersaturation. Their physicochemical properties were studied using powder X-ray diffraction (PXRD), infrared (IR) and laser Raman (LR) spectra, thermogravimetry (TG), differential scanning calorimetry (DSC), evolved gas analysis (EGA), 27Al MAS NMR, BET surface area and pore-size determination. The PXRD of the synthesized samples showed that the crystallinity was affected by the nature of the anions present in the interlayer space. The IR and LR studies revealed that except the NO-3 ion, the symmetry of these interlayer anions was reduced upon intercalation. The TG, DSC and EGA results showed two or three stages of weight loss corresponding to the removal of the interlayer water, structural water and the anion, respectively. The activation energy, Ea, for the decomposition process was found to decrease in the order ZnAlCO3–HT>ZnAlSO4–HT>ZnAlCl–HT>ZnAlNO3–HT. Formation of a pentacoordinated Al (AlV) in addition to the octahedral (AlVI) and tetrahedral Al (AlIV) was the special feature noticed in the 27Al MAS NMR of the calcined samples. Thermal calcination around 500 °C resulted in the formation of non-stoichiometric ZnO whose crystallinity decreased in the order ZnAlNO3–CHT>ZnAlCl–CHT>ZnAlSO4–CHT>ZnAlCO3–HT while their extent of solid solubility was found to be the reverse. The crystallinity of the calcined samples was also correlated with surface area and pore-size determination.


Differential Scanning Calorimetry Laser Raman Interlayer Water Interlayer Anion Laser Raman Spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. T. REICHLE, J. Catal. 94 (1985) 547.CrossRefGoogle Scholar
  2. 2.
    S. VELU and C. S. SWAMY, Appl. Catal 119 (1994) 241, and references therein.CrossRefGoogle Scholar
  3. 3.
    A. CORMA, S. IBORRA, J. PRIMO and F. REY, ibid. 114 (1994) 214.CrossRefGoogle Scholar
  4. 4.
    M. J. CLIMENT, A. CORMA, S. IBORRA and J. PRIMO, J. Catal. 151 (1995) 60.CrossRefGoogle Scholar
  5. 5.
    D. TICHIT, M. H. LHOUTY, A. GUIDA, B. H. CHICHE, F. FIGUERAS, A. AUROUX, D. BARTALINI and E. GARRONE, ibid. 151 (1995) 50.CrossRefGoogle Scholar
  6. 6.
    V. R. L. CONSTANTINO and T. J. PINNAVAIA., Catal. Lett. 23 (1994) 361.CrossRefGoogle Scholar
  7. 7.
    C. T. FISHEL, and R. J. DAVIS, ibid. 25 (1994) 87.CrossRefGoogle Scholar
  8. 8.
    J. SHEN, J. M. KOBE, Y. CHEN and J. A. DUMESIC, Langmuir 10 (1994) 3902.CrossRefGoogle Scholar
  9. 9.
    A. OOKUBO, K. OOI and H. HAYASHI, ibid. 9 (1993) 1418.CrossRefGoogle Scholar
  10. 10.
    C. MOUSTY, S. THERIAS, C. FORNANO and J. BESSE, J. Electroanal. Chem. 374 (1994) 63.CrossRefGoogle Scholar
  11. 11.
    J. WANG, Y. TIAN, R. WANG and A. CLEARFIELD, Chem. Mater. 4 (1992) 1276.CrossRefGoogle Scholar
  12. 12.
    V. R. L. CONSTANTINO and T. J. PINNAVAIA, Inorg. Chem. 34 (1995) 883.CrossRefGoogle Scholar
  13. 13.
    M. J. HERNANDEZ, M. A. ULIBARRI, J. I. RENDON and C. J. SERNA, Thermochim. Acta 81 (1984) 311.CrossRefGoogle Scholar
  14. 14.
    S. MIYATA and A. OKADA, Clays Clay Mineral. 25 (1977) 14.CrossRefGoogle Scholar
  15. 15.
    S. KANNAN, S. VELU, V. RAMKUMAR and C. S. SWAMY, J. Mater. Sci. 30 (1995) 1462.CrossRefGoogle Scholar
  16. 16.
    S. KANNAN and C. S. SWAMY, ibid., in press.Google Scholar
  17. 17.
    S. MIYATA, Clays Clay Mineral. 23 (1975) 369.CrossRefGoogle Scholar
  18. 18.
    E. KANEZAKI, K. KINUGAWA and Y. ISHIKAWA, Chem. Phys. Lett. 226 (1994) 325.CrossRefGoogle Scholar
  19. 19.
    T. SATO, S. ONAI, T. YOSHIOKA and A. OKUWAKI, J. Chem. Tech. Biotechnol 57 (1993) 137.CrossRefGoogle Scholar
  20. 20.
    M. J. HERNANDEZ-MORENO, M. A. ULIBARRI, J. L. RENDON and C. J. SERNA, Phys. Chem. Mineral. 12 (1985) 34.Google Scholar
  21. 21.
    K. J. D. MACKENZIE, R. H. MEINHOLD, B. L. SHERRIFF and ZHIXU, J. Mater. Chem. 3 (1993) 1263.CrossRefGoogle Scholar
  22. 22.
    F. THEVENOT, R. SZYMANSKI and P. CHAUMETTE, Clays Clay Mineral. 37 (1989) 396.CrossRefGoogle Scholar
  23. 23.
    S. VELU, DOROTHY SAMUEL and C. S. SWAMY, in “Catalysis: Modern Trends”, edited by N. M. Gupta and D. K. Chakrabarthy (Narosa, New Delhi, India, 1995) p. 470.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • S VELU
    • 1
    • 1
    • 1
  • C. S SWAMY
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyMadrasIndia

Personalised recommendations