Advertisement

Journal of Materials Science

, Volume 32, Issue 6, pp 1665–1670 | Cite as

The effect of Cr2O3 additive on the electrical properties of ZnO varistor

  • YONG HYUK KIM
  • H KAWAMURA
  • M NAWATA
Article

Abstract

The effect of Cr2O3 additive on the leakage conduction and threshold voltage characteristics of bismuth-based ZnO ceramic varistor was studied. The leakage conduction in the voltage range below the threshold voltage increased with increasing Cr2O3 concentration and is attributed to the Schottky barrier height. It was found that the increases in the apparent threshold voltage were associated with the lowered donor concentration in the depletion region of the ZnO grain. These results were obtained by measuring C–V characteristics, the breakdown voltage at the current density of 10-3 A cm-2 and the microstructure of ZnO ceramics.

Keywords

Barrier Height Threshold Voltage Breakdown Voltage Donor Concentration Chromium Oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. C. CHEN and C. Y. SHEN,J. Appl. Phys. 69 (1991) 8363.CrossRefGoogle Scholar
  2. 2.
    K. EDA,J. Appl. Phys. 50 (1979) 4436.CrossRefGoogle Scholar
  3. 3.
    D. R. CLARKE,ibid. 50 (1979) 6829.CrossRefGoogle Scholar
  4. 4.
    J. WONG,ibid. 46 (1975) 1653.CrossRefGoogle Scholar
  5. 5.
    H. CERVA and W. RUSSWURM,J. Am. Ceram. Soc. 71 (1988) 522.CrossRefGoogle Scholar
  6. 6.
    B. S. CHIOU and W. JIH,Br. Ceram. Trans. J. 85 (1986) 118.Google Scholar
  7. 7.
    E. D. KIM and C. H. KIM,J. Appl. Phys. 58 (1985) 3231.CrossRefGoogle Scholar
  8. 8.
    U. SCHWING and B. HOFFMANN,ibid. 57 (1958) 5372.CrossRefGoogle Scholar
  9. 9.
    M. MATSUOKA,Jpn J. Appl. Phys. 10 (1971) 736.CrossRefGoogle Scholar
  10. 10.
    M. INADA,ibid. 17 (1978) 673.CrossRefGoogle Scholar
  11. 11.
    K. EDA, A. IGA and M. MATSUOKA,J. Appl. Phys. 51 (1980) 2678.CrossRefGoogle Scholar
  12. 12.
    G. D. MAHAN, L. M. LEVINSON and H. R. PHILIPP,ibid. 50 (1979) 2799.CrossRefGoogle Scholar
  13. 13.
    P. L. HOWER and T. K. GUPTA,ibid. 50 (1979) 4847.CrossRefGoogle Scholar
  14. 14.
    K. HAUFFE,Z. Phys. Chem. 196 (1950) 160.Google Scholar
  15. 15.
    Y. SHIN and J. F. CORDARO,J. Appl. Phys. 64 (1988) 3994.CrossRefGoogle Scholar
  16. 16.
    L. M. LEVINSON and H. R. PHILIPP,Ceram. Bull. 65 (1986) 639.Google Scholar
  17. 17.
    E. OLSSON and G. L. DUNLOP,J. Appl. Phys. 66 (1989) 3666.CrossRefGoogle Scholar
  18. 18.
    P. R. EMTAGE,ibid. 50 (1979) 6833.CrossRefGoogle Scholar
  19. 19.
    K. MUKAE and I. NAGASAWA,Adv. Ceram. 1 (1981) 331.Google Scholar
  20. 20.
    K. TSUDA, K. MUKAE and I. NAGASAWA,J. Appl. Phys. 50 (1979) 4475.CrossRefGoogle Scholar
  21. 21.
    W. G. MORRIS,J. Vac. Sci. Technol. 13 (1976) 926.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • YONG HYUK KIM
    • 1
  • H KAWAMURA
    • 2
  • M NAWATA
    • 2
  1. 1.Department of Electrical EngineeringKyung Won CollegeSungnam-shi Kyunggi-doKorea
  2. 2.Department of Electrical and Electronic EngineeringMeijo UniversityTempaku-ku NagoyaJapan

Personalised recommendations