Journal of Materials Science

, Volume 32, Issue 6, pp 1649–1655 | Cite as

Sintering and crystallization of volume- and surface-modified cordierite glass powders



The sintering and crystallization behaviour of a series of cordierite-type glass powders with varying substitution of Na2O for MgO was compared with that of glass powders subjected to an Mg2+2Na+ ion-exchange treatment. The ion-exchange modifies only the properties of a 3–4 μm thick surface layer on the glass grains. Whereas the bulk substitution results in a decrease in the glass transition temperature, Tg, the surface modification shows only a small influence on the overall Tg of the ion-exchanged glass. Both glass powder series show, however, a temperature decrease of the start of sintering with increasing Na2O content which demonstrates that only the viscosity of a surface layer is decisive for the start of sintering. The sintering range is enlarged to higher temperatures through the suppression of the crystallization of β-quartz solid solution. The surface-modified glass powders show strong cordierite crystallization at constant temperatures around 1000 °C, whereas in the bulk-modified glass powders, the temperature of cordierite crystallization increases and the total amount of cordierite decreases with increasing Na2O content.


Cordierite Crystallization Behaviour Nepheline Glass Powder Thick Surface Layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. FRENKEL,J. Phys. (USSR) IX (1945) 385.Google Scholar
  2. 2.
    J. K. MACKENZIE and R. SHUTTLEWORTH,Proc. Phys. Soc. (Lond.) Sect. B 62 (1949) 833.CrossRefGoogle Scholar
  3. 3.
    G. PARTRIDGE,Glass Technol x28 (1987) 9.Google Scholar
  4. 4.
    R. MÜLLER, D. THAMM and W. PANNHORST,Bol. Soc. Esp. Ceram. Vid. 31-C 5 (1992) 105.Google Scholar
  5. 5.
    R. MORRELL,Proc. Br. Ceram. Soc. 28 (1979) 53.Google Scholar
  6. 6.
    E. M. RABINOVICH, in “Nucleation and Crystallization in Glasses”, edited by J. H. Simmons, D. R. Uhlmann and G. H. Beall (American Ceramic Society, Colombus, Ohio 1982) p. 327.Google Scholar
  7. 7.
    T. HÜBERT, R. MÜLLER and M. KIRSCH,Silikattechnik 39 (1988) 183.Google Scholar
  8. 8.
    S. H. KNICKERBOCKER, A. H. KUMAR and L. W. HERRON,Am. Ceram. Soc. Bull. 72 (1993) 90.Google Scholar
  9. 9.
    E. A. GIESS, J. P. FLETCHER and L. W. HERRON,J. Am. Ceram. Soc. 67 (1984) 549.CrossRefGoogle Scholar
  10. 10.
    K. WATANABE and E. A. GIESS,ibid. 68 (1985) C102.Google Scholar
  11. 11.
    T. RUDOLPH, D. V. SZABO, W. PANNHORST, K. L. WEISSKOPF and G. PETZOW,Glastech. Ber. 64 (1991) 218.Google Scholar
  12. 12.
    C. I. HELGESSON,Sci. Ceram. 8 (1981) 347.Google Scholar
  13. 13.
    T. J. CLARK and J. S. REED,J. Am. Ceram. Soc. 69 (1986) 837.CrossRefGoogle Scholar
  14. 14.
    Idem,Am. Ceram. Soc. Bull. 65 (1986) 1506.Google Scholar
  15. 15.
    I. SZABO, W. PANNHORST and M. RAPPENSBERGER,Bol. Soc. Esp. Ceram. Vid. 31-C 5 (1992) 119.Google Scholar
  16. 16.
    H. OKAMURA, E. A. BARRINGER and H. K. BOWEN,J. Am. Ceram. Soc. 69 (1986) C22.CrossRefGoogle Scholar
  17. 17.
    F. A. SELMI and V. R. W. AMARAKOON,ibid. 71 (1988) 934.CrossRefGoogle Scholar
  18. 18.
    K. G. BROOKS and V. R. W. AMARAKOON,ibid. 74 (1991) 851.CrossRefGoogle Scholar
  19. 19.
    M. D. SACKS, N. BOZKURT and G. W. SCHEIFFELE,ibid. 74 (1991) 2428.CrossRefGoogle Scholar
  20. 20.
    J. S. KIM, H. SCHUBERT and G. PETZOW,J. Eur. Ceram. Soc. 5, (1989) 311.CrossRefGoogle Scholar
  21. 21.
    M. KULIG, W. OROSCHIN and P. GREIL,ibid. 5 (1989) 209.CrossRefGoogle Scholar
  22. 22.
    C. M. WANG and F. L. RILEY,ibid. 10 (1992) 83.CrossRefGoogle Scholar
  23. 23.
    A. GARG and E. MATIJEVIC,Langmuir 4 (1988) 38.CrossRefGoogle Scholar
  24. 24.
    B. DJURICIC, D. McGARRY and S. PICKERING, in “Third Euro-Ceramics”, edited by P. Durán and J. F. Fernández, Vol. 1 (Faemza Editnce, Ibrice SL. 1993) p. 237.Google Scholar
  25. 25.
    M. BOUCHNAFA, B. SOULESTIN, R. GUINEB-RETIERE, A. LECOMTE and A. DAUGER, in “Proceedings of the International Symposium on Glass Science and Technology” 6–8 October, edited by Kordas Athens, Greece (1993).Google Scholar
  26. 26.
    R. GUINEBRETIERE, A. DAUGER and A. LECOMTE, in “Eurogel '91”, editd by S. Vilminot, R. Nass and H. Schmidt (Elsevier Science, 1992) p. 391.Google Scholar
  27. 27.
    S. D. STOOKEY, J. S. OLCOTT, H M. GARFINKEL and D. L. ROTHERMAL, in "Advances in Glass Technology" (Plenum Press, New York, 1962) p. 397.Google Scholar
  28. 28.
    N. H. RAY and M. H. STACEY,J. Mater. Sci. 4 (1969) 73.CrossRefGoogle Scholar
  29. 29.
    H. M. GARFINKEL,Glass Ind. 50 (1969) 28.Google Scholar
  30. 30.
    Idem.,ibid. 50 (1969) 74.Google Scholar
  31. 31.
    G. J. FINE and P. S. DANIELSON,Phys. Chem. Glasses 29 (1988) 134.Google Scholar
  32. 32.
    G. H. FRISCHAT, Ionic diffusion in oxide glasses” (Trans Tech Publications, Aedermannsdorf, Switzerland, 1975).Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
  1. 1.Laboratoire de Science des Materiaux VitreuxUniversite Montpellier IIMontpellier cedex 5France

Personalised recommendations