Journal of Materials Science

, Volume 32, Issue 6, pp 1631–1637 | Cite as

Corrosive degradation of a dense Si3N4 in a burner rig



The demands for greater efficiency and reduced environmental pollution are two of the main factors behind the intense research and development for new and improved materials for propulsion and power generation systems. On the grounds of density and retention of properties at high temperatures, ceramics are attractive alternatives to metallic materials. While much attention is focused on the problem of mechanical reliability, the question of corrosion resistance, and more importantly the synergism between corrosion and strength, are critical factors affecting the life of components. This investigation addresses the corrosion of a Si3N4, hot-pressed with 3% Al2O3 and 8% Y2O3, in a combustion atmosphere paying particular attention to corrosion. The results show that the dominant surface reaction in an atmosphere containing SO2 and compounds of sodium was oxidation, giving a surface product of silica, but the kinetics were in some cases not parabolic as often reported. It was also shown that strength progressively decreased with increasing corrosion test temperature, probably due to the formation of subsurface defects.


Parabolic Rate Constant Combustion Environment Parabolic Kinetic Weight Change Data Combustion Atmosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. NICHOLLS and S. R. J. SAUNDERS,High Temp. Technol. 7 (1989) 193.CrossRefGoogle Scholar
  2. 2.
    N. S. JACOBSON,J. Amer. Ceram. Soc. 76 (1993) 3.CrossRefGoogle Scholar
  3. 3.
    G. B. DAVIES, T. M. HOLMES and O. J. GREGORY,Adv. Ceram. Mater. 3 (1988) 542.CrossRefGoogle Scholar
  4. 4.
    G. N. BABINI, A. BELLOSI and P. VINCENZINI,J. Mater. Sci. 19 (1984) 1029.CrossRefGoogle Scholar
  5. 5.
    A. BELLOSI, G. N. BABINI, H. LI-PING and F. XI-REN,Mater. Chem. Phys. 26 (1990) 21.CrossRefGoogle Scholar
  6. 6.
    A. BELLOSI and G. N. BABINI,Key Engng Mater. 89 –91 (1994) 117.Google Scholar
  7. 7.
    S. R. J. SAUNDERS and J. R. NICHOLLS,High Temp. Technol. 7 (1989) 232.CrossRefGoogle Scholar
  8. 8.
    G. ERIKSSON,Chem. Scripta 8 (1975) 100.Google Scholar
  9. 9.
    JIS R 1609, Japanese Industrial Standard, “Testing methods for oxidation resistance of non-oxide high performance ceramics” (Japanese Standards Association, Japan, 1990).Google Scholar
  10. 10.
    A. BELLOSI and C. GALASSI,Mater. Engng 1 (1990) 949.Google Scholar
  11. 11.
    K. G. NICKEL, in “Corrosion of Advanced Ceramics: Measurement and Modelling”, edited by K. G. Nickel, (Kluwer Academic Publishers, Dordrecht, 1994) pp. 59–71.CrossRefGoogle Scholar
  12. 12.
    B. E. DEAL and A. S. GROVES,J. Appl. Phys. 36 (1965) 3770.CrossRefGoogle Scholar
  13. 13.
    F. L. RILEY, in “Corrosion of Advanced Ceramics: Measurement and Modelling”, edited by K. G. Nickel (Kluwer Academic Publishers, Dordrecht, 1994) pp. 85–96.CrossRefGoogle Scholar
  14. 14.
    P. O. KÄLL, M. NYGREN and J. PERSSON,ibid. pp. 73–84.Google Scholar
  15. 15.
    J. B. VEYRET and M. BILLY, in Proceedings of the 1st European Ceramics Society Conference, ECERS-1, edited by R. A. Terpstra and R. Metselaar (Elsevier Applied Science, Barking, 1989) p. 512.Google Scholar
  16. 16.
    D. JOHNSON-WALLS, A. G. EVANS, D. B. MARSHALL and M. R. JAMES,J. Amer. Ceram. Soc. 69 (1986) 44.CrossRefGoogle Scholar
  17. 17.
    A. G. EVANS,Mater. Sci. Engng 71 (1985) 3.CrossRefGoogle Scholar
  18. 18.
    C. MELANDRI, S. TAGLIAFERRI, S. GUICCIARDI and G. ANDALÒ,Ceram. Acta 5 (1993) 73.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
    • 2
  1. 1.CEC-JRC, Institute for Advanced MaterialsPettenThe Netherlands
  2. 2.CNR-IRTECFaenzaItaly

Personalised recommendations