Journal of Neurocytology

, Volume 26, Issue 10, pp 667–678 | Cite as

Changes in the mRNAs encoding subtypes I, II and III sodium channel alpha subunits following kainate-induced seizures in rat brain

  • F. Bartolomei
  • M. Gastaldi
  • A. Massacrier
  • R. Planells
  • S. Nicolas
  • P. Cau


Several lines of evidence underscore a possible role of voltage-gated Na+ channels (NaCH) in epilepsy. We compared the regional distribution of mRNAs coding for Na+ channel α subunit I, II and III in brains from control and kainate-treated rats using non-radioactive in situ hybridization with subtype-specific digoxigenin-labelled cRNA probes. Labelling intensity was evaluated by a densitometric analysis of digitized images. Heterogeneous distribution of the three Na+ channel mRNAs was demonstrated in brain from adult control rats, which confirmed previous studies. Subtype II mRNAs were shown to be abundant in cerebellum and hippocampus. Subtype I mRNAs were also detected in these areas. Subtype III mRNAs were absent in cerebellar cortex, but significantly expressed in neurons of the medulla oblongata and hippocampus. The three subtypes were differentially distributed in neocortical layers. Subtype II mRNAs were present in all of the layers, but mRNAs for subtypes I and III were concentrated in pyramidal cells of neocortex layers IV–V. During kainate-induced seizures, we observed an increase in Na+ channel II and III mRNA levels in hippocampus. In dentate gyrus, subtype III mRNAs increased 3 h after K A administration to a maximum at 6 h. At this latter time, a lower increase in NaCh III mRNAs was also recorded in areas CA1 and CA3. NaCh III overexpression in dentate gyrus persisted for at least 24 h. In the same area, NaCh II mRNAs were also increased with a peak 3 h after K A injection and a return to control levels by 24 h. No changes in NaCh I mR NAs were seen. The K A-induced up-regulation in NaCh mR NAs probably resulted in an increase in hippocampal neuronal excitability.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, C. M. I., Ware, D. H., Lee, S. C., Patten, C. D., Ferrer-Montiel, A. V., Schinder, A. F. McPherson, J. D., Wagner-McPherson, C. B., Wasmuth, J. J., Evans, G. A. & Montal, M. (1992) Primary structure, chromosomal localization, and functional expression of a voltage-gated sodium channel from human brain. Proceedings of the National Academy of Science, USA 89, 8220–4.Google Scholar
  2. Akopian, A. N., Souslova, V., Sivilotti, L. & Wood, J. N. (1997) Structure and distribution of a broadly expressed atypical sodium channel. FEBS Letters 400, 183–7.PubMedGoogle Scholar
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403–10.CrossRefPubMedGoogle Scholar
  4. Auld, V. J., Goldin, A. L., Krafte, D. S., Marshall, J., Dunn, J. M., Catterall, W. A., Lester, H. A., Davidson, N. & Dunn, R. J. (1988) A rat brain Na+ channel α subunit with novel gating properties. Neuron 1, 449–61.PubMedGoogle Scholar
  5. Beckh, S., Noda, M., LÜbbert, H. & Numa, S. (1989) Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO Journal 8, 3611–16.PubMedGoogle Scholar
  6. Ben-Ari, Y. (1985) Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14, 375–403.PubMedGoogle Scholar
  7. Black, J. A., Yokoyama, S., Higashida, H., Ransom, B. R. & Waxman, S. G. (1994) Sodium channel mRNAs I, II and III in the CNS: cell-specific expression. Molecular Brain Research 22, 275–89.PubMedGoogle Scholar
  8. Brysch, W., Creutzfeldt, O. D., LÜno, K., Schlingensiepen, R. & Schlingensiepen, K.-H. (1991) Regional and temporal expression of sodium channel messenger RNAs in the rat brain during development. Experimental Brain Research 86, 562–7.Google Scholar
  9. Bugra, K., Pollard, H., Charton, G., Moreau, J., Ben-Ari, Y. & Khrestchatisky, M. (1994) aFGF, bFGF and flg mRNAs show distinct patterns of induction in the hippocampus following kainateinduced seizures. European Journal of Neuroscience 6, 58–66.PubMedGoogle Scholar
  10. Catterall, W. A. (1987) Common modes of drug action on Na+ channels: local anesthetics, antiarrhythmics and anticonvulsivants. Trends in Pharmacological Science 8, 57–65.Google Scholar
  11. Catterall, W. A. (1992) Cellular and molecular biology of voltage-gated sodium channels. Physiological Reviews 72, S15–S48.PubMedGoogle Scholar
  12. Chong, J. A., Tapia-Ramirez, J., Kim, S., Toledoaral, J. J., Zheng, Y., Boutros, M. C., Altschuller, Y. M., Frohman, M. A., Kraner, S. D. & Mandel, G. (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949–57.PubMedGoogle Scholar
  13. Crill, W. E. (1996) Persistent sodium current in mammalian central neurons. Annual Review of Physiology 58, 349–62.PubMedGoogle Scholar
  14. D'Arcangelo, G., Paradiso, K., Shepherd, D., Brehm, P., Halegoua, S. & Mandel, G. (1993) Neuronal growth factor regulation of two different sodium channel types through distinct signal transduction pathways. Journal of Cell Biology 122, 915–21.PubMedGoogle Scholar
  15. Dargent, B., Paillart, C., Carlier, E., Alcaraz, G., Martin-Eauclaire, M.-F. & Couraud, F. (1994) Sodium channel internalization in developing neurons. Neuron 13, 683–90.PubMedGoogle Scholar
  16. Dugich-Djordjevic, M. M., Tocco, G., Lapchak, P. A., Pasinetti, G. M., Najm, I., Baudry, M. & Hefti, F. (1992) Regionally specific and rapid increases in brain-derived neurotrophic factor messenger RNA in the adult rat brain following seizures induced by systemic administration of kainic acid. Neuroscience 47, 303–15.PubMedGoogle Scholar
  17. Feldblum, S., Ackermann, R. F. & Tobin, A. J. (1990) Long-term increase of glutamate decarboxylase mRNA in a rat model of temporal lobe epilepsy. Neuron 5, 361–71.PubMedGoogle Scholar
  18. Franck, J. E., Kunkel, D. D., Baskin, D. G. & Schwartzkroin, P. A. (1988) Inhibition in kainate lesioned hyperexcitable hippocampi: physiologic, autoradiographic and immunocytochemical observations. Journal of Neuroscience 8, 1991–2002.PubMedGoogle Scholar
  19. Furuyama, T., Morita, Y., Inagaki, S. & Takagi, H. (1993) Distribution of I, II and III subtypes of voltage-sensitive Na+ channel mRNA in the rat brain. Molecular Brain Research 17, 169–73.PubMedGoogle Scholar
  20. Gall, C. & Isackson, P. J. (1989) Limbic seizures increase neuronal production of mRNA for nerve growth factor. Science 245, 758–61.PubMedGoogle Scholar
  21. Gall, C., Sumikawa, K. & Lynch, G. (1990) Levels of mRNA for a putative kainate receptor are affected by seizures. Proceedings of the National Academy of Science, USA 87, 7643–7.Google Scholar
  22. Gastaldi, M., Bartolomei, F., Massacrier, A., Planells, R., Robaglia-Schlupp, A. & Cau, P. (1997) Increase in mRNAs encoding neonatal II and III sodium channel alpha isoforms during kainateinduced seizures in adult rat hippocampus. Molecular Brain Research 44, 179–90.PubMedGoogle Scholar
  23. Gastaldi, M., Massacrier, A., Planells, R., Robaglia-Schlupp, A., Portal-Bartolomei, I., BourliÈre, M., Quilici, F., Fiteni, J., Mazzella, E. & Cau, P. (1995) Detection by in situ hybridization of hepatitis C virus positive and negative RNA strands using digoxigenin-labeled cRNA probes in human liver cells. Journal of Hepatology 23, 509–18.PubMedGoogle Scholar
  24. Gautron, S., Dos Santos, G., Pinto-Henrique, D., Koulakoff, A., Gros, F. & Berwald-Netter, Y. (1992) The glial voltage-gated sodium channel: Cell-and tissue-specific mRNA expression. Proceedings of the National Academy of Science, USA 89, 7272–6.Google Scholar
  25. Gordon, D., Merrick, D., Auld, Y., Dunn, R., Goldin, A. L., Davidson, N. & Catterall, W. A. (1987) Tissue specific expression of the R I and R II sodium channels subtypes. Proceedings of the National Academy of Science, USA 84, 8682–8.Google Scholar
  26. Gustafson, T. A., Clevinger, E. C., O'Neill, T. J., Yarowsky, P. J. & Krueger, B. K. (1993) Mutually exclusive exon splicing of type III brain sodium channel a subunit RNA generates developmentally regulated isoforms in rat brain. Journal of Biological Chemistry 268, 18648–53.PubMedGoogle Scholar
  27. Hille, B. (ed.) (1992) Structure and functions. In Ionic Channels of Excitable Membranes, pp. 423–44. Sunderland: Sinauer.Google Scholar
  28. Isackson, P. J., Huntsman, M. M., Murray, K. D. & Gall, C. M. (1991) BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Neuron 6, 937–48.PubMedGoogle Scholar
  29. Iwahashi, Y., Furuyama, T., Inagaki, S., Morita, Y. & Takagi, H. (1994) Distinct regulation of sodium channel types I, II and III following nerve transection. Molecular Brain Research 22, 341–5.PubMedGoogle Scholar
  30. Kamphuis, W., de Rijk, T. C., Talamini, L. M. & Lopes Da Silva, F. H. (1994) Rat hippocampal kindling induces changes in the glutamate receptor mRNA expression patterns in dentate granule neurons. European Journal of Neuroscience 6, 1119–27.PubMedGoogle Scholar
  31. Kayano, T., Noda, M., Flockerzi, V., Takahashi, H. & Numa, S. (1988) Primary structure of rat brain sodium channel III deduced from the cDNA sequence. FEBS Letters 228, 187–94.PubMedGoogle Scholar
  32. Kiessling, M. & Gass, P. (1993) Immediate early gene expression in experimental epilepsy. Brain Pathology 3, 381–93.PubMedGoogle Scholar
  33. Lara, A., Dargent, B., Julien, F., Alcaraz, G., Tricaud, N., Couraud, F. & Jover, E. (1996) Channel activators reduce the expression of sodium channel a-subunit mRNA in developing neurons. Molecular Brain Research 37, 116–24.PubMedGoogle Scholar
  34. Lombardo, A. J., Kuzniecky, R., Powers, R. E. & Brown, G. B. (1996) Altered brain sodium channel transcript levels in human epilepsy. Molecular Brain Research 35, 84–90.PubMedGoogle Scholar
  35. Mandel, G., Cooperman, S. S., Maue, R. A., Goodman, R. H. & Brehm, P. (1988) Selective induction of brain type II Na+ channels by nerve growth factor. Proceedings of the National Academy of Science, USA 85, 924–28.Google Scholar
  36. Maue, R. A., Kraner, S. D., Goodman, R. H. & Mandel, G. (1990) Neuron-specific expression of the rat brain type II sodium channel gene is directed by upstream regulatory elements. Neuron 4, 223–31.PubMedGoogle Scholar
  37. McDonald, R. L. & Kelly, K. M. (1993) Antiepileptic drug mechanisms of action. Epilepsia 34(suppl. 5), S1–S8.Google Scholar
  38. Meier, C. L., Obenaus, A. & Dudek, F. E. (1992) Persistent hyperexcitability in isolated hippocampal CA1 of kainate-lesioned rats. Journal of Neurophysiology 68, 2120–7.PubMedGoogle Scholar
  39. Mize, R. R., Holdfeder, R. N. & Nabors, L. B. (1988) Quantitative immunocytochemistry using an image analyser. I. Hardware evaluation, image processing and data analysis. Journal of Neuroscience Methods 26, 1–24.PubMedGoogle Scholar
  40. Moorman, A. F. M., De Boer, P. A. J., Vermeulen, J. L. M. & Lamers, W. H. (1993) Practical aspects of radio-isotopic in situ hybridization on RNA. Histochemical Journal 25, 251–66.PubMedGoogle Scholar
  41. Moorman, J. R., Kirsch, G. E., Vandongen, A. M. J., Joho, R. H. & Brown, A. M. (1990) Fast and slow gating of sodium channels encoded by a single mRNA. Neuron 4, 243–52.PubMedGoogle Scholar
  42. Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H. & Numa, S. (1986) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320, 188–92.PubMedGoogle Scholar
  43. Oh, Y., Black, J. A. & Waxman, S. G. (1994) The expression of rat brain voltage-sensitive Na+ channel mRNAs in astrocytes. Molecular Brain Research 23, 57–65.PubMedGoogle Scholar
  44. Paillart, C., Boudier, J.-L., Boudier, J.-A., Rochat, H., Couraud, F. & Dargent, B. (1996) Activity-induced internalization and rapid degradation of sodium channels in cultured fetal neurons. Journal of Cell Biology 134, 499–509.PubMedGoogle Scholar
  45. Pennypacker, K. R., Walczack, D., Thai, L., Fannin, R., Mason, E., Douglass, J. & Hong, J. S. (1993) Kainate-induced changes in opioid peptide genes and AP-1 protein expression in the rat hippocampus. Journal of Neurochemistry 60, 204–11.PubMedGoogle Scholar
  46. Pollard, H., HÉron, A., Moreau, J., Ben-Ari, Y. & Khrestchatisky, M. (1993) Alterations of the GluR-BAMPA receptor subunit Flip/Flop expression in kainate-induced epilepsy and ischemia. Neuroscience 57, 545–54.PubMedGoogle Scholar
  47. Pratt, G. D., Kokaia, M., Bengzon, J., Kokaia, Z., Fritschy, J.-M., MÖhler, H. & Lindvall, O. (1993) Differential regulation of N-methyl-D-aspartate receptor subunit messenger RNAs in kindling-induced epileptogenesis. Neuroscience 57, 307–18.PubMedGoogle Scholar
  48. Prince, D. (1993) Basic mechanisms of focal epileptogenesis. In Epileptogenic and Excitotoxic Mechanisms (edited by Avanzini, G., Fariello, R., Heinemann, U. & Mutani, R.) pp. 17–27. London: John Libbey.Google Scholar
  49. Ragsdale, D. S., Scheuer, T. & Catterall, W. A. (1991) Frequency and voltage-dependent inhibition of type IIA Na+ channels, expressed in mammalian cell line, by local anaesthetic, antiarrythmic and anticonvulsant drugs. Molecular Pharmacology 40, 756–65.PubMedGoogle Scholar
  50. Represa, A., Niquet, J., Polard, H., Khrestchatisky, M. & Ben-Ari, Y. (1994) From seizure to neo-synaptogenesis: intrinsic and extrinsic determinants of mossy fiber sprouting in the adult hippocampus. Hippocampus 4, 270–4.PubMedGoogle Scholar
  51. Sarao, R., Gupta, S. K., Auld, V. J. & Dunn, R. J. (1991) Developmentally regulated alternative RNA splicing of rat brain sodium channel mRNAs. Nucleic Acids Research 19, 5673–9PubMedGoogle Scholar
  52. Sashihara, S., Yanagihara, N., Izumi, F., Murai, Y. & Mita, T. (1994) Differential up-regulation of voltage-dependent Na+ channels induced by phenytoin in brains of genetically seizure-susceptible (EI) and control (ddY) mice. Neuroscience 62, 803–11.PubMedGoogle Scholar
  53. Sashihara, S., Yanagihara, N., Kobayashi, H., Izumi, F., Tsuji, S., Murai, Y. & Mita, T. (1992) Overproduction of voltage-dependent Na+ channels in the developing brain of genetically seizure-susceptible EI mice. Neuroscience 48, 285–91.PubMedGoogle Scholar
  54. Schaller, K. L., Krzemien, D. M., Yarowsky, P. J., Krueger, B. K. & Caldwell, J. H. (1995) A novel, abundant sodium channel expressed in neurons and glia. Journal of Neuroscience 15, 3231–42.PubMedGoogle Scholar
  55. Schmidt, J. W. & Catterall, W. A. (1986) Biosynthesis and processing of the a subunit of the voltagesensitive sodium channel in rat brain neurons. Cell 46, 437–45.PubMedGoogle Scholar
  56. Schmitz, G. G., Walter, T., Seibl, R. & Kessler, C. (1991) Nonradioactive labeling of nucleotides in vitro with the hapten digoxigenin by tailing with terminal transferase. Analytical Biochemistry 192, 222–31.PubMedGoogle Scholar
  57. Schoenherr, C. J. & Anderson, D. J. (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–3.PubMedGoogle Scholar
  58. Sperk, G. (1994) Kainic acid seizures in the rat. Progress in Neurobiology 42, 1–32.PubMedGoogle Scholar
  59. Sperk, G., Lassmann, H., Baran, H., Kish, S. J., Seitelberger, F. & Hornykiewicz, O. (1983) Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience 10, 1301–15.PubMedGoogle Scholar
  60. Suzuki, H., Beckh, S., Kubo, H., Yahagi, N., Ishida, H., Kayano, T., Noda, M. & Numa, S. (1988) Functional expression of cloned cDNA encoding sodium channel III. FEBS Letters 228, 195–200.PubMedGoogle Scholar
  61. Tian, L. M., Otoom, S. & Alkadhi, K. A. (1995) Endogenous bursting due to altered sodium channel function in rat hippocampal CA1 neurons. Brain Research 680, 164–72.PubMedGoogle Scholar
  62. Tsaur, M. L., Sheng, M., Lowenstein, D. H., Jan, Y. N. & Jan, L. Y. (1992) Differential expression of K+ channel mRNAs in the rat brain and down regulation in the hippocampus following seizures. Neuron 8, 1055–67.PubMedGoogle Scholar
  63. Virginio, C. & Cherubini, E. (1995) Functional expression of voltage dependent sodium channels in Xenopus oocytes injected with mRNA from neonatal or adult rat brain. Developmental Brain Research 87, 153–9.PubMedGoogle Scholar
  64. Westenbroek, R. E., Merrick, D. K. & Catterall, W. A. (1989) Differential subcellular localisation of the R I and R II Na+ channel subtypes in central neurons. Neuron 3, 695–704.PubMedGoogle Scholar
  65. Westenbroek, R. E., Noebels, J. L. & Catterall, W. A. (1992) Elevated expression of type II Na+ channels in hypomyelinated axons of shiverer mouse brain. Journal of Neuroscience 12, 2259–67.PubMedGoogle Scholar
  66. Wisden, W. & Seeburg, P. H. (1993) A complex mosaic of high-affinity kainate receptors in rat brain. Journal of Neuroscience 13, 3582–98.PubMedGoogle Scholar
  67. Xie, X., Lancaster, B., Peakman, T. & Garthwaite, J. (1995) Interaction of the antiepileptic drug lamotrigine with recombinant rat brain type IIA Na+ channels and with native Na+ channels in rat hippocampal neurons. European Journal of Physiology 430, 437–46.PubMedGoogle Scholar
  68. Yarowsky, P. J., Krueger, B. K., Olson, C. E., Clevinger, E. C. & Koos, R. D. (1991) Brain and heart sodium channel subtype mRNA expression in rat cerebral cortex. Proceedings of the National Academy of Science, USA 88, 9453–7.Google Scholar
  69. Zur, K. B., Oh, Y., Waxman, S. G. & Black, J. A. (1995) Differential upregulation of sodium channel α-and β1-subunit mRNAs in cultured embryonic DRG neurons following exposure to NGF. Molecular Brain Research 30, 97–103.PubMedGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • F. Bartolomei
    • 1
  • M. Gastaldi
    • 1
  • A. Massacrier
    • 1
  • R. Planells
    • 2
  • S. Nicolas
    • 3
  • P. Cau
    • 1
  1. 1.Faculte de MedecineLaboratoire de Biologie CellulaireMarseille Cedex 5
  2. 2.Faculte de MedecineLaboratoire de Biochimie, INSERM U 38Marseille Cedex 5
  3. 3.LuminyIBDMMarseilleFrance

Personalised recommendations