Advertisement

Journal of Materials Science

, Volume 32, Issue 8, pp 1963–1967 | Cite as

Sintering of elemental carbonyl iron and carbonyl nickel powder mixtures

  • TIEN-YIN CHAN
  • SHUN-TIAN LIN
Article

Abstract

Iron-nickel alloys with compositions ranging from pure iron to pure nickel at increments of 10 wt% have been prepared by mixing fine elemental carbonyl iron and nickel powders, and sintering at temperatures between 1200–1350°C. The addition of nickel to iron promoted densification and avoided abnormal grain growth at low concentrations. However the densification was retarded when the iron and nickel had approximately equivalent concentrations. As the concentration of nickel increased, the room temperature structures of the alloys gradually changed from α-Fe into γ-(Fe, Ni), with Fe-30 wt% Ni and Fe-40 wt%, Ni containing both phases. The relative abundance of each phase was determined by the degree of compositional homogeneity achieved in sintering.

Keywords

Erential Stress Carbonyl Iron Sintered Density Elemental Powder Nickel Powder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. ZHANG and R. M. GERMAN, Int. J. Powder Metall. 27 (1991) 249.Google Scholar
  2. 2.
    V. TRACEY, Metal Powder Report 28 (1993) 28.Google Scholar
  3. 3.
    W. HUME-ROTHERY, in ‘‘The structures of alloys of iron, an elementary introduction’’ (Pergamon Press, NY, 1966) p. 120.Google Scholar
  4. 4.
    K. S. HWANG and M. Y. HSIAO, in ‘‘Powder Injection Molding Symposium-1992’’, edited by P. H. Booker, J. Gaspervich and R. M. German (Metal Powder Industries Federation, Princeton, NJ, 1992) p. 53.Google Scholar
  5. 5.
    D. WENSCHHOF, in ‘‘Metals handbook’’, Vol. 3, 9th Edn, (American Society for Metals, Metals Park, OH, 1980) p. 792.Google Scholar
  6. 6.
    G. Y. CHIN, L. L. HARNER, M. F. LITTMANN, and J. W. SHILLING, ibid. p. 597.Google Scholar
  7. 7.
    R. M. GERMAN, in ‘‘Powder Injection Molding’’, (Metal Powder Industries Federation, Princeton, NJ, 1990) p. 1.Google Scholar
  8. 8.
    B. K. LOGRASSO, A. BOSE, B. J. CARPENTER, C. I. CHUNG, K. F. HENS, D. LEE, S. T. LIN, R. M. GERMAN, R. M. MESSELER, P. F. MURLEY, B. O. RHEE, C. M. SIERRA and J. WARREN, Int. J. Powder Metall., 25 (1989) 337.Google Scholar
  9. 9.
    Y. KIYOTA, J. OHTA, I. SAKURADA, H. OHTSUBO and S. TAKAJO, in ‘‘Advances in powder metallurgy’’, Vol. 3, edited by E. R. Andreotti and P. J. McGeehan (Metal Powder Industries Federation, Princeton, NJ, 1990) p. 455.Google Scholar
  10. 10.
    Y. H. HO and S. T. LIN, Metall. Mater. Trans. A, 26A (1995) 133.CrossRefGoogle Scholar
  11. 11.
    C. J. SMITHELLS and E. A. BRANDES, in ‘‘Metal reference book’’, 5th Edn. (Butterworths, London, 1977) p. 935.Google Scholar
  12. 12.
    C. H. SAE, M.S. thesis, National Taiwan University, Taipei, Taiwan, (1995) p. 38.Google Scholar
  13. 13.
    B. D. CULLITY, in ‘‘Elements of X-ray diffraction’’, 2nd Edn. (Addison-Wesley, Reading, MA, 1978) p. 376.Google Scholar
  14. 14.
    S. T. LIN, R. M. GERMAN, K. F. HENS and D. LEE, in ‘‘Advances in powder metallurgy’’, Vol. 3, edited by E. R. Andreotti and P. J. McGeehan (Metal Powder Industries Federation, Princeton, NJ, 1990) p. 423.Google Scholar
  15. 15.
    P. F. STABLEIN and G. C. KUCZYNSKI, Acta Metall. 11 (1963) 1327.CrossRefGoogle Scholar
  16. 16.
    H. H. HAUSNER, in ‘‘Handbook of powder metallurgy’’ (Chemical Publishing Co., New York, 1973) Tables 9.2 and 9.3.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • TIEN-YIN CHAN
    • 1
  • SHUN-TIAN LIN
    • 2
  1. 1.Mechanical Engineering DepartmentFar-East CollegeTainanTaiwan
  2. 2.Mechanical Engineering DepartmentNational Taiwan Institute of TechnologyTaipeiTaiwan

Personalised recommendations