Journal of Neurocytology

, Volume 26, Issue 9, pp 577–603 | Cite as

Autonomic synaptic transmission at single boutons and calyces

  • M. R Bennett
  • K Brain


Synaptic Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, E. M., Augustine, G. J., Duffy, S. N. & Charlton, M. P. (1991) Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. Journal of Neuroscience 11, 1496-507.Google Scholar
  2. Araujo, D. M. & Collier, B. (1987) Do presynaptic opiate receptors and alpha-adrenoceptors alter acetylcholine release from a sympathetic ganglion by a similar mechanism? European Journal of Pharmacology 139, 179-86.Google Scholar
  3. Arch, J. R. & Newsholme, E. A. (1978) Activities and some properties of 5'-nucleotidase, adenosine kinase and adenosine deaminase in tissues from vertebrates and invertebrates in relation to the control of the concentration and the physiological role of adenosine. Biochemical Journal 174, 965-77.Google Scholar
  4. Bartol Jr, T. M., Land, B. P., Salpeter, E. E. & Salpeter, M. M. (1991) Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophysical Journal 59, 1290-307.Google Scholar
  5. Bennett, M. R. (1994) Quantal secretion from single visualized synaptic varicosities of sympathetic nerve terminals. Advances in Second Messenger and Phosphoprotein Research 29, 399-423.Google Scholar
  6. Bennett, M. R. (1995) The origin of Gaussian distributions of synaptic potentials. Progress in Neurobiology 46, 331-50.Google Scholar
  7. Bennett, M. R. (1996) Neuromuscular transmission at an active zone: the secretosome hypothesis. Journal of Neurocytology 25, 869-91.Google Scholar
  8. Bennett, M. K., Calakos, N. & Scheller, R. H. (1992a) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255-9.Google Scholar
  9. Bennett, M. R., Farnell, L. & Gibson, W. (1997a) On the origin of skewed distributions of spontaneous synaptic potentials in autonomic ganglia. Proceedings of the Royal Society of London, Series B, in press.Google Scholar
  10. Bennett, M. R., Farnell, L., Gibson, W. G. & Lavidis, N. A. (1997b) Synaptic transmission at visualized sympathetic boutons: stochastic interaction between acetylcholine and its receptors. Biophysical Journal, in press.Google Scholar
  11. Bennett, M. R., Florin, T. & Pettigrew, A. G. (1976) The effect of calcium ions on the binomial statistic parameters that control acetylcholine release at preganglionic nerve terminals. Journal of Physiology 257, 579-620.Google Scholar
  12. Bennett, M. R., Gibson, W. & Robinson, J. (1997c) Probabilistic secretion of quanta and the secretosome hypothesis: evoked release at active zones of varicosities, boutons and endplates. Biophysical Journal, in press.Google Scholar
  13. Bennett, M. R., Gibson, W. G. & Robinson, J. (1995) Probabilistic secretion of quanta: spontaneous release at active zones of varicosities, boutons, and endplates. Biophysical Journal 69, 42-56.Google Scholar
  14. Bennett, M. R. & Ho, S. (1991) Probabilistic secretion of quanta from nerve terminals in avian ciliary ganglia modulated by adenosine. Journal of Physiology 440, 513-27.Google Scholar
  15. Bennett, M. R., Karunanithi, S. & Lavidis, N. A. (1991) Probabilistic secretion of quanta from nerve terminals in toad (Bufo marinus) muscle modulated by adenosine. Journal of Physiology 433, 421-34.Google Scholar
  16. Bennett, M. R., Kerr, R. & Khurana, G. (1992b) Adenosine modulation of calcium currents in postganglionic neurons of avian cultured ciliary ganglia. British Journal of Pharmacology 106, 25-32.Google Scholar
  17. Bertram, R., Sherman, A. & Stanley, E. F. (1996) Single-domain/bound calcium hypothesis of transmitter release and facilitation. Journal of Neurophysiology 75, 1919-31.Google Scholar
  18. Betz, W. J. & Bewick, G. S. (1992) Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200-3.Google Scholar
  19. Blackman, J. G., Ginsborg, B. L. & Ray, C. (1963a) Spontaneous synaptic activity in sympathetic ganglion cells of the frog. Journal of Physiology 167, 389-401.Google Scholar
  20. Blackman, J. G., Ginsborg, B. L. & Ray, C. (1963b) On the quantal release of the transmitter at a sympathetic synapse. Journal of Physiology 167, 402-15.Google Scholar
  21. Blackman, J. G. & Purves, R. D. (1969) Intracellular recordings from ganglia of the thoracic sympathetic chain of the guinea-pig. Journal of Physiology 203, 173-98.Google Scholar
  22. Bornstein, J. C. (1978) Spontaneous multiquantal release at synapses in guinea-pig hypogastric ganglia: evidence that release can occur in bursts. Journal of Physiology 282, 375-98.Google Scholar
  23. Bornstein, J. C. (1981) Effects of stimulation of the multiquantal spontaneous synaptic potentials in guinea pig hypogastric ganglia. Neuroscience Letters 22, 57-61.Google Scholar
  24. Borst, J. G., Helmchen, F. & Sakmann, B. (1995) Pre-and postsynaptic whole-cell recordings in the medical nucleus of the trapezoid body of the rat. Journal of Physiology 489, 825-40.Google Scholar
  25. Borst, J. G. G. & Sakmann, B. (1996) Calcium influx and transmitter release is a fast CNS synapse. Nature 383, 431-4.Google Scholar
  26. Brain, K. L. & Bennett, M. R. (1995) Calcium in the nerve terminals of chick ciliary ganglia during facilitation, augmentation and potentiation. Journal of Physiology 489, 637-48.Google Scholar
  27. Brain, K. L. & Bennett, M. R. (1996) Mechanisms involved in the regulation of intracellular calcium following trains of stimuli in the chick ciliary ganglion. Proceedings of the Australian Neuroscience Society 7, 87.Google Scholar
  28. Briggs, C. A., Brown, T. H. & Mcafee, D. A. (1985) Neurophysiology and pharmacology of long-term potentiation in the rat sympathetic ganglion. Journal of Physiology 359, 503-21.Google Scholar
  29. Briggs, C. A. & Mcafee, D. A. (1988) Long-term potentiation at nicotinic synapses in the rat superior cervical ganglion. Journal of Physiology 404, 129-44.Google Scholar
  30. Delcastillo, J. & Katz, B. (1954) Quantal components of the end-plate potential. Journal of Physiology 124, 560-73.Google Scholar
  31. Delaney, K. R. & Tank, D. W. (1994) A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium. Journal of Neuroscience 14, 5885-902.Google Scholar
  32. Delaney, K., Tank, D. W. & Zucker, R. S. (1991) Presynaptic calcium and serotonin-mediated enhancement of transmitter release at crayfish neuromuscular junction. Journal of Neuroscience 11, 2631-43.Google Scholar
  33. Delaney, K. R., Zucker, R. S. & Tank, D. W. (1989) Calcium in motor nerve terminals associated with posttetanic potentiation. Journal of Neuroscience 9, 3558-67.Google Scholar
  34. Dennis, M. J., Harris, A. J. & Kuffler, S. W. (1971) Synaptic transmission and its duplication by focally applied acetylcholine in parasympathetic neurons in the heart of the frog. Proceedings of the Royal Society of London Series B: Biological Sciences 177, 509-39.Google Scholar
  35. Derkach, V. A., Selyanko, A. A. & Skok, V. I. (1983) Acetylcholine-induced current fluctuations and fast excitatory post-synaptic currents in rabbit sympathetic neurons. Journal of Physiology 336, 511-26.Google Scholar
  36. Dryer, S. E. & Chiappinelli, V. A. (1987) Analysis of quantal content and quantal conductance in two populations of neurons in the avian ciliary ganglion. Neuroscience 20, 905-10.Google Scholar
  37. Edwards, F. A., Konnerth, A. & Sakmann, B. (1990) Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. Journal of Physiology 430, 213-49.Google Scholar
  38. Elfvin, L. G., Lindh, B. & Hokfelt, T. (1993) The chemical neuroanatomy of sympathetic ganglia. Annual Review of Neuroscience 16, 417-507.Google Scholar
  39. Erichsen, J. T., Karten, H. J., Eldred, W. D. & Brecha, N. C. (1982) Localization of substance P-like and enkephalin-like immunoreactivity within preganglionic terminals of the avian ciliary ganglion: light and electron microscopy. Journal of Neuroscience 2, 994-1003.Google Scholar
  40. Fletcher, G. H. & Chiappinelli, V. A. (1993) The actions of the kappa 1 opioid agonist U-50,488 on presynaptic nerve terminals of the chick ciliary ganglion. Neuroscience 53, 239-50.Google Scholar
  41. Fogelson, A. L. & Zucker, R. S. (1985) Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation. Biophysical Journal 48, 1003-17.Google Scholar
  42. Hamburger, V. & Hamilton, H. L. A. (1951) A series of normal stages in the development of the chick embryo. Journal of Morphology 88, 49-92.Google Scholar
  43. Happola, O., Soinila, S., Paivarinta, H. & Panula, P. (1987) [Met5]enkephalin-Arg6-Phe7-and [Met5]enkephalin-Arg6-Gly7-Leu-8-immunoreactive nerve fibres and neurons in the superior cervical ganglion of the rat. Neuroscience 21, 283-95.Google Scholar
  44. Haydon, P. G., Henderson, E. & Stanley, E. F. (1994) Localization of individual calcium channels at the release face of a presynaptic nerve terminal. Neuron 13, 1275-80.Google Scholar
  45. Hirst, G. D. & Mclachlan, E. M. (1984) Post-natal development of ganglia in the lower lumbar sympathetic chain of the rat. Journal of Physiology 349, 119-34.Google Scholar
  46. Horch, H. L. W. & Sargent, P. B. (1996) Synaptic and extrasynaptic distribution of two distinct populations of nicotinic acetylcholine receptor clusters in the frog cardiac ganglion. Journal of Neurocytology 25, 67-77.Google Scholar
  47. Katayama, Y. & Nishi, S. (1984) Sites and mechanisms of actions of enkephalin in the feline parasympathetic ganglion. Journal of Physiology 351, 111-21.Google Scholar
  48. Koyano, K., Kuba, K. & Minota, S. (1985) Long-term potentiation of transmitter release induced by repetitive presynaptic activities in bull-frog sympathetic ganglia. Journal of Physiology 359, 219-33.Google Scholar
  49. Kuba, K. & Nishi, S. (1979) Characteristics of fast excitatory postsynaptic current in bullfrog sympathetic ganglion cells. Effects of membrane potential, temperature and Ca ions. Pflugers Archiv. European Journal of Physiology 378, 205-12.Google Scholar
  50. Lavidis, N. A. & Bennett, M. R. (1992) Probabilistic secretion of quanta from visualized sympathetic nerve varicosities in mouse vas deferens. Journal of Physiology 454, 9-26.Google Scholar
  51. Lin, Y. Q., Brain, K. L. & Bennett, M. R. (1997) Calcium in sympathetic boutons of rat superior cervical ganglion during facilitation, augmentation and potentiation. Proceedings of the Australian Neuroscience Society 8, 126.Google Scholar
  52. Lin, Y. Q., Brain, K. L., Nichol, K. A., Morgan, J. J. & Bennett, M. R. (1996) Vesicle-associated proteins and calcium in nerve terminals of chick ciliary ganglia during development of facilitation. Journal of Physiology 497, 639-56.Google Scholar
  53. Llinas, R., Gruner, J. A., Sugimori, M., Mcguinness, T. L. & Greengard, P. (1991) Regulation by synapsin I and Ca(2 + )-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse. Journal of Physiology 436, 257-82.Google Scholar
  54. Lundberg, J. M. (1996) Pharmacology of cotransmission in the autonomic nervous system: integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacological Reviews 48, 113-78.Google Scholar
  55. Macdermott, A. B., Connor, E. A., Dionne, V. E. & Parsons, R. L. (1980) Voltage clamp study of fast excitatory synaptic currents in bullfrog sympathetic ganglion cells. Journal of General Physiology 75, 39-60.Google Scholar
  56. Margiotta, J. F. & Berg, D. K. (1986) Enkephalin and substance P modulate synaptic properties of chick ciliary ganglion neurons in cell culture. Neuroscience 18, 175-82.Google Scholar
  57. Martin, A. R. & Pilar, G. (1964) Quantal components of the synaptic potential in the ciliary ganglion of the chick. Journal of Physiology 175, 1-16.Google Scholar
  58. Martin-Moutot, N., Charvin, N., Leveque, C., Sato, K., Nishiki, T., Kozaki, S., Takahashi, M. & Seagar, M. (1996) Interaction of SNARE complexes with P/Q-type calcium channels in rat cerebellar synaptosomes. Journal of Biological Chemistry 271, 6567-70.Google Scholar
  59. Mcfadzean, I. (1988) The ionic mechanisms underlying opioid actions. Neuropeptides 11, 173-80.Google Scholar
  60. Meriney, S. D. & Grinnell, A. D. (1991) Endogenous adenosine modulates stimulation-induced depression at the frog neuromuscular junction. Journal of Physiology 443, 441-55.Google Scholar
  61. Miledi, R., Molenaar, P. & Polak, R. L. (1982) Free and bound acetylcholine in frog muscle. Journal of Physiology 333, 189-99.Google Scholar
  62. Motin, L. G., Bennett, M. R. & Christie, M. J. (1995) Opioids acting on delta-receptors modulate Ca2+ currents in cultured postganglionic neurons of avian ciliary ganglia. Neuroscience Letters 193, 21-4.Google Scholar
  63. Mynlieff, M. & Beam, K. G. (1994) Adenosine acting at an A1 receptor decreases N-type calcium current in mouse motoneurons. Journal of Neuroscience 14, 3628-34.Google Scholar
  64. Perin, M. S., Johnston, P. A., Ozcelik, T., Jahn, R., Francke, U. & Sudhof, T. C. (1991) Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. Journal of Biological Chemistry 266, 615-22.Google Scholar
  65. Pieribone, V. A., Shupliakov, O., Brodin, L., Hilfiker-Rothenfluh, S., Czernik, A. J. & Greengard, P. (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375, 493-7.Google Scholar
  66. Poage, R. E. & Zengel, J. E. (1993) Kinetic and pharmacological examination of stimulation-induced increases in synaptic efficacy in the chick ciliary ganglion. Synapse 14, 81-9.Google Scholar
  67. Rang, H. P. (1981) The characteristics of synaptic currents and responses to acetylcholine of rat submandibular ganglion cells. Journal of Physiology 311, 23-55.Google Scholar
  68. Redman, R. S. & Silinsky, E. M. (1993) A selective adenosine antagonist (8-cyclopentyl-1,3-dipropylxanthine) eliminates both neuromuscular depression and the action of exogenous adenosine by an effect on A1 receptors. Molecular Pharmacology 44, 835-40.Google Scholar
  69. Redman, R. S. & Silinsky, E. M. (1994) ATP released together with acetylcholine as the mediator of neuromuscular depression at frog motor nerve endings. Journal of Physiology 477, 117-27.Google Scholar
  70. Regehr, W. G., Delaney, K. R. & Tank, D. W. (1994) The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse. Journal of Neuroscience 14, 523-37.Google Scholar
  71. Regehr, W. G. & Tank, D. W. (1991) The maintenance of LTP at hippocampal mossy fiber synapses is independent of sustained presynaptic calcium. Neuron 7, 451-9.Google Scholar
  72. Reiner, A. (1987) A VIP-like peptide co-occurs with substance P and enkephalin in cholinergic preganglionic terminals of the avian ciliary ganglion. Neuroscience Letters 78, 22-8.Google Scholar
  73. Rekling, J. C. (1993) Effects of met-enkephalin on GAB-Aergic spontaneous miniature IPSPs in organotypic slice cultures of the rat hippocampus. Journal of Neuroscience 13, 1954-64.Google Scholar
  74. Ribeiro, J. A. & Sebastiao, A. M. (1987) On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction. Journal of Physiology 384, 571-85.Google Scholar
  75. Robinson, J. (1976) Estimation of parameters for a model of transmitter release at synapses. Biometrics 32, 61-8.Google Scholar
  76. Robinson, I. M., Yamada, M., Carrion-Vazquez, M., Lennon, V. A. & Fernandez, J. M. (1996) Specialized release zones in chromaffin cells examined with pulsed-laser imaging. Cell Calcium 20, 181-201.Google Scholar
  77. Sargent, P. B. & Pang, D. Z. (1989) Acetylcholine receptor-like molecules are found in both synaptic and extrasynaptic clusters on the surface of neurons in the frog cardiac ganglion. Journal of Neuroscience 9, 1062-72.Google Scholar
  78. Scott, T. R. & Bennett, M. R. (1993) The effect of ions and second messengers on long-term potentiation of chemical transmission in avian ciliary ganglia. British Journal of Pharmacology 110, 461-9.Google Scholar
  79. Shao, X., Davletov, B. A., Sutton, R. B., SÜdhof, T. C. & Rizo, J. (1996) Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science 273, 248-51.Google Scholar
  80. Silinsky, E. M. & Redman, R. S. (1996) Synchronous release of ATP and neurotransmitter within milliseconds of a motor nerve impulse in the frog. Journal of Physiology 492, 815-22.Google Scholar
  81. Simon, S. M. & Llinas, R. R. (1985) Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophysical Journal 48, 485-98.Google Scholar
  82. Simonds, W. F. (1988) The molecular basis of opioid receptor function. Endocrine Reviews 9, 200-12.Google Scholar
  83. Smith, P. A. (1993) The autonomic ganglia and the modulation of ganglionic transmission. Advances in Structural Biology 2, 245-316.Google Scholar
  84. Stanley, E. F. (1991) Single calcium channels on a cholinergic presynaptic nerve terminal. Neuron 7, 585-91.Google Scholar
  85. Stanley, E. F. (1993) Single calcium channels and acetylcholine release at a presynaptic nerve terminal. Neuron 11, 1007-11.Google Scholar
  86. Streichert, L. C. & Sargent, P. G. (1989) Bouton ultrastructure and synaptic growth in a frog autonomic ganglion. Journal of Comparative Neurology 281, 159-68.Google Scholar
  87. SÜdhof, T. C. & Rizo, J. (1996) Synaptotagmins - C2 domain proteins that regulate membrane traffic. Neuron 17, 379-88.Google Scholar
  88. Swandulla, D., Hans, M., Zipser, K. & Augustine, G. J. (1991) Role of residual calcium in synaptic depression and posttetanic potentiation: fast and slow calcium signalling in nerve terminals. Neuron 7, 915-26.Google Scholar
  89. Tashiro, N., Gallagher, J. P. & Nishi, S. (1976) Facilitation and depression of synaptic transmission in amphibian sympathetic ganglia. Brain Research 118, 45-62.Google Scholar
  90. Warren, D., Lavidis, N. A. & Bennett, M. R. (1995) Quantal secretion recorded from visualized boutons. Neuroscience Letters 192, 205-8.Google Scholar
  91. Warren, D., Lavidis, N. A. & Bennett, M. R. (1996) Quantal secretion from visualized boutons on rat pelvic ganglion neurons. Journal of the Autonomic Nervous System 56, 175-83.Google Scholar
  92. White, J. D., Krause, J. E., Karten, H. J. & Mckelvy, J. F. (1985) Presence and ontogeny of enkephalin and substance P in the chick ciliary ganglion. Journal of Neurochemistry 45, 1319-22.Google Scholar
  93. Whittaker, V. P. (1988) Synaptosome preparations. Journal of Neurochemistry 50, 324-5.Google Scholar
  94. Yawo, H. & Chuhma, N. (1993) Preferential inhibition of omega-conotoxin-sensitive presynaptic Ca2+-channels by adenosine autoreceptors. Nature 365, 256-8.Google Scholar
  95. Zengel, J. E. & Magleby, K. L. (1982) Augmentation and facilitation of transmitter release. A quantitative description at the frog neuromuscular junction. Journal of General Physiology 80, 583-611.Google Scholar
  96. Zengel, J. E., Magleby, K. L., Horn, J. P., Mcafee, D. A. & Yarowsky, P. J. (1980) Facilitation, augmentation, and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit. Journal of General Physiology 76, 213-31.Google Scholar
  97. Zhang, C., Bachoo, M., Morales, M., Collier, B. & Polosa, C. (1995) The site of the inhibitory action of endogenous opioids in the superior cervical ganglion of the cat. Brain Research 683, 59-64.Google Scholar
  98. Zhang, C., Bachoo, M. & Polosa, C. (1993) The receptors activated by exogenous and endogenous opioids in the superior cervical ganglion of the cat. Brain Research 622, 211-4.Google Scholar
  99. Zucker, R. S. (1989) Short-term synaptic plasticity. Annual Review of Neuroscience 12, 13-31.Google Scholar
  100. Zucker, R. S. & Fogelson, A. L. (1986) Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels. Proceedings of the National Academy of Sciences USA 83, 3032-6.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • M. R Bennett
    • 1
  • K Brain
  1. 1.The Neurobiology Laboratory, Department of Physiology and Institute for Biomedical ResearchUniversity of Sydney F13Australia

Personalised recommendations