Characterization of xanthans from selected Xanthomonas strains cultivated under constant dissolved oxygen

  • A. Sa´nchez
  • M.E. Rami´rez
  • L.G. Torres
  • E. Galindo


Seventeen wild-type Xanthomonas isolates were screened in terms of broth viscosity in shake-flasks. As culture conditions affect polymer characteristics, a fair comparison among isolates required their cultivation in a fermenter under controlled dissolved oxygen tension. Three isolates and a reference strain were studied. The mean molecular weights and molecular weight distributions of their xanthans were determined. Products showed different pyruvate (0.2–7%), acetate (5–10%) and proteinaceous nitrogen (1–3%) contents. The selected isolates exhibit properties which could improve xanthan gum production and some could be used to produce polymers with specific characteristics.

Dissolved oxygen screening xanthan Xanthomonas campestris 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Callet, F., Milas, M. & Rinaudo, M. 1987 Influence of acetyl and pyruvate contents on rheological properties of xanthan gum in dilute solution. International Journal of Biological Macromolecules 9, 291-293.Google Scholar
  2. Flores, F., Torres, L.G. & Galindo, E. 1994 Effect of the dissolved oxygen tension during cultivation of X. Campestris on the production and quality of xanthan gum. Journal of Biotechnology 34, 165-173.Google Scholar
  3. Galindo, E. 1994a Aspects of the process for xanthan production, Transactions of the Institute of Chemical Engineering (part C) 72, 227-237.Google Scholar
  4. Galindo, E. 1994b Engineering and microbiological aspects of the production of microbial polysaccharides: xanthan as a model. In Bioproducts Processing: Technology for the Tropics, ed Hashim, A.M., Institute of Chemical Engineering Symposium Series, Vol. 137, pp. 169-177.Google Scholar
  5. Galindo, E., Salcedo, G., Flores, C. & Ramirez, M.E. 1993 Improved shake-flask test for the screening of xanthan-producing microorganisms. World Journal of Microbiology and Biotechnology 9, 122-124Google Scholar
  6. Galindo, E., Salcedo, G. & Ramirez, M.E. 1994 Preservation of Xanthomonas campestris on agar slopes: effects on xanthan production. Applied Microbiology and Biotechnology, 40: 634-637.Google Scholar
  7. Galindo, E., Torrestiana, B. & Garcia-Rejón 1989 Rheological characterization of xanthan fermentation broths and their reconstituted solutions. Bioprocess Engineering 4, 113-118.Google Scholar
  8. Graham, H.D. 1971 Microdetermination of Keltrol (xanthan gum). Journal of Dairy Science 54, 1162-1128.Google Scholar
  9. Hadjivassiliou, A.A. & Rieder, S.V. 1968 The enzymatic assay of pyruvic and lactic acid. A definitive procedure. Clinica Chimica Acta 19, 357-361.Google Scholar
  10. Herbst, H., Peters, H.U., Suh, I.S., Schumpe, A. & Deckwer, W.D. 1988 Monitoring xanthan quality during fermentation by size exclusion chromatography. Biotechnology Techniques 2 (2), 101-104.Google Scholar
  11. Herbst, H., Schumpe, A. & Deckwer, W.D. 1992 Xanthan production in stirred tank fermenters: oxygen transfer and scale-up. Chemical Engineering and Technology 15, 425-434.Google Scholar
  12. Hwang, J. & Kokini, J.L. 1991 Structure and rheological function of the side branches of carbohydrate polymers. Journal of Texture Studies 22, 123-167.Google Scholar
  13. Kennedy, J.F. & Bradshaw, I.J. 1984 Production, properties and applications of xanthan. Progress in Industrial Microbiology 19, 319-371.Google Scholar
  14. Kennedy, A.F.D. & Sutherland, I.W. 1987 Analysis of bacterial exopolysaccharides. Biotechnology and Applied Biochemistry 9, 12-19.PubMedGoogle Scholar
  15. Kleinitz, W., Littmann, W. & Herbst, H. 1989 Screening of xanthan-biopolymer for a high salinity oil reservoir. Proceedings of the Fifth European Symposium on Improved Oil Recovery, 25-27 April 1989 pp. 1-9. Budapest, Hungary.Google Scholar
  16. McComb, E.A. & McCready, R.M. 1957 Determination of acetyl in pectin and in acetylated carbohydrate polymers. Hidroxamic acid reaction. Analytical Chemistry 29, 819-821.Google Scholar
  17. Montes, A.L. 1966 Bromatología. Vol. I, pp. 58-60. Argentina: Ed. Universitaria de Buenos Aires.Google Scholar
  18. Moraine, R.A. & Rogovin, P. 1971 Xanthan biopolymer production at increased concentration by pH control. Biotechnology and Bioengineering 13, 381-391.Google Scholar
  19. Morris, E.R. 1977 Molecular origin of xanthan solution properties. In Extracellular Microbial Polysaccharides, eds Sandford, P.A. & Laskin, A., ACS Symp. Series, Vol. 45, pp. 81-89. Washington, DC: American Chemical Society.Google Scholar
  20. Nitschke, M. & Thomas, R.W.S.P. 1995 Xanthan gum production by wild-type isolates of Xanthomonas campestris. World Journal of Microbiology and Biotechnology 11, 502-504.Google Scholar
  21. Ramírez, M.E., Fucikovsky, L., García-Jiménez, F., Quintero, R. & Galindo, E. 1988 Xanthan gum production by altered pathogenicity variants of Xanthomonas campestris. Applied Microbiology and Biotechnology 29, 5-10.Google Scholar
  22. Roseiro, J.C., Esgalhado, M.E., Amaral-CollaÇo, M.T. & Emery, A.N. 1992 Medium development for xanthan productions. Process Biochemistry 27, 167-175.Google Scholar
  23. SaÂnchez, A., MartõÂnez, A., Torres, L. & Galindo, E. 1992 Power consumption of three impeller combinations in mixing xanthan fermentation broths. Process Biochemistry 27, 351-365.Google Scholar
  24. Sandford, P.A., Pittsley, J.E., Knutson, C.A., Watson, P.R., Cadmus, M.C. & Jeanes, A. 1977 Variation in Xanthomonas campestris NRRL B-1459: characterization of xanthan products of differing pyruvic acid content. In Extracellular Microbial Polysaccharides, eds Sanford, P.A. & Laskin, A., ACS Symp. Series vol. 45, pp. 192-209. Washington, DC: American Chemical Society.Google Scholar
  25. Scamparini, A.R.P. & Rosato, Y.B. 1987 Production of xanthan gum by different isolates of Xanthomonas campestris. Proceedings of the 4th European Congress on Biotechnology, 1, eds Niejssel, D.M., Van der Meer, R.R. & Luyben, K.Ch.A.M. pp. 301-304. Amsterdam: Elsevier Science.Google Scholar
  26. Shatwell, K.P. & Sutherland, I.W. 1990 The influence of acetyl and pyruvate substituents on the helix-coil transition behaviour of xanthan. Carbohydrate Research 206, 87-103.Google Scholar
  27. Suh, I.S., Herbst, H., Schumpe, A. & Deckwer, W.D. 1990 The molecular weight of xanthan polysaccharide produced under oxygen limitation. Biotechnology Letters 12 (3), 201-206.Google Scholar
  28. Tako, M. & Nakamura, S. 1984 Rheological properties of deacetylated xanthan in aqueous media. Agriculture and Biological Chemistry 48 (12), 2987-2993.Google Scholar
  29. Torrestiana, B., Fucikovsky, L. & Galindo, E. 1990 Xanthan production by some Xanthomonas isolates. Letters in Applied Microbiology 10, 81-83.Google Scholar
  30. Xueming, Z., Nienow, A.W., Kent, C.A., Chatwin, S. & Galindo, E. 1991 Improving xanthan fermentation performance by changing agitators, Proceedings of 7th European Conference on Mixing, 18-20 September 1991, Brugge, Belgium, Vol. I, KVI vzw, pp. 277-283.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • A. Sa´nchez
    • 1
  • M.E. Rami´rez
    • 2
  • L.G. Torres
    • 3
  • E. Galindo
    • 1
  1. 1.Depto. de Bioingenieri´aInstituto de Biotecnologi´a, Universidad Nacional Auto´noma de Me´xicoCuernavaca, MorelosMe´xico
  2. 2.Instituto de Ecologi´aXalapa, VeracruzMe´xico
  3. 3.Coordinacio´n de Ingenieri´a Ambiental, Instituto de Ingenieri´a, UNAMCiudad UniversitariaCoyoaca´n Me´xicoD.F. Me´xico

Personalised recommendations