Journal of Neurocytology

, Volume 26, Issue 3, pp 133–148

Ontogenetic development of diffusional restriction to protein at the pial surface of the rat brain: an electron microscopical study

  • Yael Balslev
  • Norman R Saunders
  • Kjeld MØllgard


Blood–brain, blood–CSF and ventricular CSF–brain barriers to protein, are present very early in brain development. In order to determine whether the outer pial surface of the brain also restricts free penetration of macromolecules, the dorso-lateral part of the sensorimotor cortex from rats at embryonic day 12 (E12), 14, 16, and 18, the day of birth (P0), and adult rat, was studied by electron microscopical techniques. Potassium ferrocyanide, Ruthenium Red and immunogold labelling of endogenous albumin were used to investigate junctional structures and the sites of restriction to albumin diffusion. At E12, large fenestrated sinusoids were present in the pia-arachnoid and the brain surface was formed by an incomplete layer of neuroepithelial and presumptive radial glial end feet, but capillaries in the pia-arachnoid showed no fenestrations at E14 or later. From E14, we observed the progressive appearance of distinct junctional structures between the glial end feet which, to our knowledge, have not been described before. Analysis of albumin distribution from E16 to P0 suggests that the junctions may contribute to restriction of diffusion between the subarachnoid space and the brain extracellular fluid. The restriction to the penetration of protein at both the pial and the ependymal surfaces may ensure the isolation of the neural environment during a critical phase in development of the nervous system. The changes in the structure of the junctions between E12 and P0 suggests a transitional series of embryonic junctional types, which eventually give way to the mature junctions of the adult. Parallels between the embryonic glial junctions and junctions described in adult invertebrate brain, suggest some interesting parallels in junctional development in phylogeny and ontogeny.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABBOTT, N. J. (1992) Comparative physiology of the blood-brain barrier. In Physiology and Pharmacology of the Blood-Brain Barrier (edited by BRADBURY, M. W. B.) pp. 371–96. Berlin: Springer-Verlag.Google Scholar
  2. ABBOTT, N. J. & BUNDGAARD, M. (1992) Electron-dense tracer evidence for a blood-brain barrier in the cuttlefish Sepia officinalis. Journal of Neurocytology 21, 276–94.Google Scholar
  3. ABBOTT, N. J., LANE, N. J. & BUNDGAARD, M. (1992) A fiber matrix model for the restricting junction of the blood-brain barrier in a cephalopod mollusc: implications for capillary and epithelial permeability. Journal of Neurocytology 21, 304–11.Google Scholar
  4. ABNET, K., FAWCETT, J. W. & DUNNETT, S. B. (1991) Interactions between meningeal cells and astrocytes in vivo and in vitro. Developmental Brain Research 59, 187–96.Google Scholar
  5. ANDERS, J. J. & BRIGHTMAN, M. W. (1979) Assemblies of particles of the cell membranes of developing, mature and reactive astrocytes. Journal of Neurocytology 8, 777–95.Google Scholar
  6. BALSLEV, Y. & HANSEN, G. H. (1989) Preparation and use of recombinant protein G-gold complexes as markers in double labelling immunocytochemistry. Histochemical Journal 21, 449–54.Google Scholar
  7. BALSLEV, Y., SAUNDERS, N. R. & M∅LLGÅ RD, K. (1992) Onset of neocortical synaptogenesis in neonatal Monodelphis domestica. Synapse 10, 267–70.Google Scholar
  8. BALSLEV, Y., SAUNDERS, N. R. & M∅LLGÅ RD, K. (1996) Synaptogenesis in the neocortical anlage and early developing neocortex of rat embryos. Acta Anatomica 156, 2–10.Google Scholar
  9. BAUER, H. C., BAUER, H., LAMETSCHWANDTNER, A., AMBERGER, A., RUIZ, P. & STEINER, M. (1992) Neovascularization and the appearance of morphological characteristics of the blood-brain barrier in the embryonic mouse central nervous system. Developmental Brain Research 75, 269–78.Google Scholar
  10. BRADBURY, M. (1979) The Concept of a Blood-Brain Barrier. Chichester, New York, Brisbane, Toronto: John Wiley & Sons.Google Scholar
  11. BRIGHTMAN, M. W. (1977) Morphology of blood-brain interfaces. Experimental Eye Research 25, 1–25.Google Scholar
  12. BRIGHTMAN, M. W. & REESE, T. S. (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. Journal of Cell Biology 40, 648–77.Google Scholar
  13. BRIGHTMAN, M. W., PRESCOTT, L. & REESE T. S. (1975) Intercellular junctions of special ependyma. In Brain-Endocrine Interaction II (edited by KNIGGE, K. M., SCOTT, D. E., KOBAYASHI, H. & ISHII, S.) pp. 119–37. Basel: Karger.Google Scholar
  14. BUNDGAARD, M. & ABBOTT, N. J. (1992) Fine structure of the blood-brain interface in the cuttlefish Sepia officinalis (Mollusca, Cephalopoda). Journal of Neurocytology 21, 260–75.Google Scholar
  15. CARLEMALM, E., VILLIGER, W., HOBOT, J. A., ACETARIN, J. D., & KELLENBERGER, E. (1985) Low temperature embedding with Lowicryl resins: two new formulations and some applications. Journal of Microscopy 140, 55–63.Google Scholar
  16. DAVSON, H. & SEGAL, M. B. (1996) Physiology of the CSF and Blood-Brain Barriers. Boca Raton, FL: CRC Press Inc.Google Scholar
  17. DAVSON, H., WELCH, K. & SEGAL, M. B. (1987) The Physiology and Pathophysiology of the Cerebrospinal Fluid. Edinburgh: Churchill Livingstone.Google Scholar
  18. DE BRUIJN, W. C. & DEN BREEJEN, P. (1975) Glycogen, its chemistry and morphological appearance in the electron microscope. II. The complex formed in the selective contrast staining of glycogen. Histochemical Journal 7, 205–29.Google Scholar
  19. DE BRUIJN, W. C. & DEN BREEJEN, P. (1976) Glycogen, its chemistry and morphological appearance in the electron microscope. III. Identification of the tissue ligands involved in the glycogen contrast staining reaction with the osmium (VI)-iron (II) complex. Histochemical Journal 8, 121–42.Google Scholar
  20. DERMIETZEL, R. (1975) Junctions in the central nervous system of the cat. V. The junctional complex of the pia-arachnoid membrane. Cell and Tissue Research 164, 309–29.Google Scholar
  21. DZIEGIELEWSKA, K. M., EVANS, C. A. N., MALINOVSKA, D. H., M∅LLGÅRD, K., REYNOLDS, J. M., REYNOLDS, M. L. & SAUNDERS, N. R. (1979) Studies of the development of brain barrier systems to lipid insoluble molecules in fetal sheep. Journal of Physiology 292, 207–31.Google Scholar
  22. DZIEGIELEWSKA, K. M., EVANS, C. A. N., LAI, P. C.W., LORSCHEIDER, F. L., MALINOVSKA, D. H., M∅LLGÅRD, K. & SAUNDERS, N. R. (1981a) Proteins in cerebrospinal fluid and plasma of fetal rats during development. Developmental Biology 83, 193–200.Google Scholar
  23. DZIEGIELEWSKA, K. M., EVANS, C. A. N., LORSCHEIDER, F. L., MALINOVSKA, D. H., M∅LLGÅRD, K., REYNOLDS, M. L. & SAUNDERS, N. R. (1981b) Plasma proteins in fetal sheep brain: blood-brain barrier and intracerebral distribution. Journal of Physiology 318, 230–50.Google Scholar
  24. DZIEGIELEWSKA, K. M., HINDS, L. A., M∅LLGÅRD, K., REYNOLDS, M. L. & SAUNDERS, N. R. (1988) Blood-brain, blood-cerebrospinal fluid and cerebrospinal fluid-brain barriers in a marsupial (Macropus eugenii) during development. Journal of Physiology 403, 367–88.Google Scholar
  25. DZIEGIELEWSKA, K. M., HABGOOD, M. D., M∅LLGÅRD, K., STAGAARD, M. & SAUNDERS, N. R. (1991) Species-specific transfer of plasma albumin from blood into different cerebrospinal fluid compartments in the fetal sheep. Journal of Physiology 439, 215–37.Google Scholar
  26. EHRLICH, P. (1885) Das Sauerstoff-BedÅrfniss des Organismus: eine Farbenanalytische Studie. Hirschwald 69–72.Google Scholar
  27. FEURER, D. J. & WELLER, R. O. (1991) Barrier functions of the leptomeninges: a study of normal meninges and meningiomas in tissue culture. Neuropathology and Applied Neurobiology 17, 391–405.Google Scholar
  28. FIRTH, A., BAUMAN, K. F. & SIBLEY, C. P. (1983) The intercellular junctions of guinea-pig placental capillaries: a possible structural basis for endothelial solute permeability. Journal of Ultrastructure Research 85, 45–57.Google Scholar
  29. FOSSAN, G., CAVANAGH, M. E., EVANS, C. A. N., MALINOWSKA, D. H., M∅LLGÅRD, K., REYNOLDS, M. L. & SAUNDERS, N. R. (1985) CSF-brain permeability in the immature sheep fetus: a CSF-brain barrier. Developmental Brain Research 18, 113–24.Google Scholar
  30. GOHEEN, M. P., BLUMERSHINE, R., BARTLETT, M. S., HULL, M. T. & SMITH, J. W. (1992) Improved intracellular morphology of pneumocystis carinii from rat lung by postfixation with a mixture of potassium ferrocyanide and osmium tetroxide. Biotechnic and Histochemistry 67, 140–8.Google Scholar
  31. GOLDFISHER, S., KRESS, Y., COLTOFF-SCHILLER, B. & BERMAN, J. (1981) Primary fixation in osmiumpotassium ferrocyanide: The staining of glycogen, glycoproteins, elastin in intranuclear reticular structure, and intracisternal trabeculae. Journal of Histochemistry and Cytochemistry 29, 1105–11.Google Scholar
  32. GOLDMANN, E. E. (1913) Vitalfarbung am Zentral-nervensystem. Abh. Preuss. Akad. Wiss., Phys.-Math. Kl.I 12, 1–60.Google Scholar
  33. HABGOOD, M. D., SEDGWICK, J. E., DZIEGIELEWSKA, K. M. & SAUNDERS, N. R. (1992) A developmentally regulated blood-cerebrospinal fluid transfer mechanism for albumin in immature rats. Journal of Physiology 456, 181–92.Google Scholar
  34. KNOTT, G. W. & SMITH, T. J. (1994) Continued growth, division and survival of cells within the fetal rodent central nervous system maintained in culture. Proceedings of Australian Neuroscience Society 5, 116.Google Scholar
  35. KÖNIG, N., VALAT, J., FULCRAND, J. & MARTY, R. (1977) The time of origin of Cajal-Retzius cells in the rat temporal cortex. An autoradiographic study. Neuroscience Letters 4, 21–6.Google Scholar
  36. KÖNIG, N., HORNUNG, J.-P. & VAN DER LOOS, H. (1981) Identification of Cajal-Retzius cells in immature rodent cerebral cortex: a combined Golgi-EM study. Neuroscience Letters 27, 225–9.Google Scholar
  37. LARSSON, L. (1975) Ultrastructure and permeability of intercellular contacts of developing proximal tubuli in the rat kidney. Journal of Ultrastructure Research 52, 100–13.Google Scholar
  38. MARIN-PADILLA, M. (1988) Embryonic vascularisation of the mammalian cerebral cortex. Cerebral Cortex (edited by PETERS, A. & JONES, E. G.) pp. 1–34. New York: Plenum Press.Google Scholar
  39. MOOS, T. & M∅LLGÅRD, K. (1993) The cerebrovascular permeability to azo dyes and plasma proteins in rodents of different ages. Neuropathology and Applied Neurobiology 19, 120–7.Google Scholar
  40. M∅LLGÅRD, K. & SAUNDERS, N. R. (1975) Complex tight junctions of epithelial and of endothelial cells in early foetal brain. Journal of Neurocytology 4, 453–68.Google Scholar
  41. M∅LLGÅRD, K. & SAUNDERS, N. R. (1986) The development of the human blood-brain and blood-CSF barriers. Neuropathology and Applied Neurobiology 12, 337–58.Google Scholar
  42. M∅LLGÅRD, K., MALINOWSKA, D. H. & SAUNDERS, N. R. (1976) Lack of correlation between tight junction morphology and permeability properties in developing choroid plexus. Nature 264, 293–4.Google Scholar
  43. M∅LLGÅRD, K., LAURITZEN, B. & SAUNDERS, N. R. (1979) Double replica technique applied to choroid plexus from early fetal sheep: completeness and complexity of tight junctions. Journal of Neurocytology 8, 139–49.Google Scholar
  44. M∅LLGÅRD, K., BALSLEV, Y., LAURITZEN, B. & SAUNDERS, N. R. (1987) Cell junctions and membrane specializations in the ventricular zone (germinal matrix) of the developing sheep brain - a CSF-brain barrier. Journal of Neurocytology 16, 433–44.Google Scholar
  45. M∅LLGÅRD, K., BALSLEV, Y., CHRISTENSEN, L. R., MOOS, T., TERKELSEN, O. B. F. & SAUNDERS, N. R. (1994) Barrier systems and growth factors in the developing brain. In Brain Lesions in the Newborn. Alfred Benzon Symposium 37 (edited by LOU, H. C., GREISEN, G. & FALCK LARSEN, J.) pp. 45–56. Copenhagen: Munksgaard.Google Scholar
  46. NABESHIMA, S., REESE, T. S., LANDIS, D. M. D. & BRIGHTMAN, M. W. (1975) Junctions in the meninges and marginal glia. Journal of Comparative Neurology 164, 127–70.Google Scholar
  47. PEASE, D. C. & SCHULTZ, R. L. (1958) Electron microscopy of rat cranial meninges. American Journal of Anatomy 102, 301–21.Google Scholar
  48. REESE, T. S. & KARNOVSKY, M. J. (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. Journal of Cell Biology 34, 207–17.Google Scholar
  49. RIVLIN, P. K. & RAYMOND, P. A. (1987) Use of osmium tetroxide-potassium ferricyanide in reconstructing cells from serial ultrathin sections. Journal of Neuroscience Methods 20, 23–33.Google Scholar
  50. SAUNDERS, N. R. (1992) Ontogenetic development of brain barrier mechanisms. Handbook of Experimental Pharmacology (edited by BRADBURY, M. W. B.) pp. 327–69. Berlin: Springer-Verlag.Google Scholar
  51. SAUNDERS, N. R. & DZIEGIELEWSKA, K. M. (1997) Barriers in the developing brain. News in Physiological Sciences, 12, 21–31.Google Scholar
  52. SAUNDERS, N. R., DZIEGIELEWSKA, K. M. & M∅LLGÅRD, K. (1991) The importance of the blood-brain barrier in fetuses and embryos. Trends in Neurosciences 14, 14.Google Scholar
  53. SCHULTZE, C. & FIRTH, A. (1992) The interendothelial junction in myocardial capillaries: evidence for the existence of regularly spaced, cleft-spanning structures. Journal of Cell Science 101, 647–55.Google Scholar
  54. SHOUKIMAS, G. M. & HINDS, J. W. (1978) The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis. Journal of Comparative Neurology 179, 795–830.Google Scholar
  55. STEWART, P. A. & HAYAKAWA, K. (1994) Early structural changes in blood-brain barrier vessels of the rat embryo. Developmental Brain Research 78, 25–34.Google Scholar
  56. TOKUYASU, K. T. & SINGER, S. J. (1976) Improved procedures for immunoferritin labelling of ultrathin frozen sections. Journal of Cell Biology 71, 894–906.Google Scholar
  57. VORBRODT, A. W. & DOBROGOWSKA, D. H. (1994) Immunocytochemical evaluation of the blood-brain barrier to endogenous albumin in adult, newborn and aged mice. Folia Histochemica et Cytobiologica 32, 63–70.Google Scholar
  58. WARD, B. J., BAUMAN, K. F. & FIRTH, J. A. (1988) Interendothelial junctions of cardiac capillaries in rat; their structure and permeability properties. Cell and Tissue Research 252, 57–66.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Yael Balslev
    • 1
  • Norman R Saunders
    • 2
  • Kjeld MØllgard
    • 1
  1. 1.Department of Medical AnatomyUniversity of Copenhagen, The Panum InstituteCopenhagen NDenmark
  2. 2.Department of Anatomy and PhysiologyUniversity of TasmaniaAustralia

Personalised recommendations