Journal of Materials Science

, Volume 32, Issue 5, pp 1187–1193 | Cite as

Oxidation of silicon nitride under standard air or microwave-excited air at high temperature and low pressure



During the atmospheric re-entry of space shuttles, the thermal constraints due to the hypersonic velocity can lead to very extensive damage on materials of the protective heat shield (oxidation, thermal shock, etc.). In order to test the oxidation resistance of such materials, we have realized an experimental set-up called MESOX which associates a concentrated radiation solar furnace and a microwave generator. The maximal heat flux is 4.5 MW m-2, and the temperature ranges up to 2500 K. The total pressure is in the range 102–104 Pa. For silicon-based ceramics, it is necessary to have a good knowledge of the conditions for the existence of a protective silica layer. The determination of the transition between passive and active oxidation is done, in the case of sintered silicon nitride, under standard and microwave-excited air.


Silicon Nitride Active Oxidation Silica Layer Passive Oxidation Valence Band Spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. U. T. Ogbuji, J. Am. Ceram. Soc. 75 (1992) 2995.CrossRefGoogle Scholar
  2. 2.
    L. U. T. Ogbuji and S. R. Bryan, ibid. 78 (1995) 1272.CrossRefGoogle Scholar
  3. 3.
    L. U. T. Ogbuji, ibid. 78 (1995) 1279.CrossRefGoogle Scholar
  4. 4.
    K. E. Spear, R. E. Tressler, Z. Zheng and H. Du, Ceram. Trans. 10 (1990) 1.Google Scholar
  5. 5.
    H. Du, Thesis in Ceramic Sciences, The Pennsylania State University, USA (1988).Google Scholar
  6. 6.
    S. C. Singhal, J. Mater. Sci. 11 (1976) 500.CrossRefGoogle Scholar
  7. 7.
    Idem, Ceram. Int. 2 (1976) 123.CrossRefGoogle Scholar
  8. 8.
    W. C. Tripp and H. C. Graham, J. Am. Ceram. Soc. 59 (1976) 399.CrossRefGoogle Scholar
  9. 9.
    J. B. Warburton, J. E. Antill and R. W. M. Hawes, ibid. 61 (1978) 67.Google Scholar
  10. 10.
    T. Hirai, K. Nihara and T. Goto, ibid. 63 (1980) 419.CrossRefGoogle Scholar
  11. 11.
    J. E. Sheehan, ibid. 65 (1982) C111.CrossRefGoogle Scholar
  12. 12.
    H. Du, R. E. Tressler, K. E. Spear and C. G. Pantano, J. Electrochem. Soc. 136 (1989) 1527.CrossRefGoogle Scholar
  13. 13.
    W. L. Vaughn and H. G. Maahs, J. Am. Ceram. Soc. 73 (1990) 1540.CrossRefGoogle Scholar
  14. 14.
    H. E. Kim and A. J. Moorhead, ibid. 73 (1990) 3007.CrossRefGoogle Scholar
  15. 15.
    M. Ishikawa, N. Takeuchi, S. Ishida, M. Wakamatsu and K. Watanabe, J. Ceram. Soc. Jpn 99 (1991) 1084.CrossRefGoogle Scholar
  16. 16.
    T. Narushima, R. Y. Lin, Y. Iguchi and T. Hirai, J. Am. Ceram. Soc. 76 (1993) 1047.CrossRefGoogle Scholar
  17. 17.
    T. Narushima, T. Goto, Y. Yokoyama, J. Hagiwara, Y. Iguchi and T. Hirai, ibid. 77 (1994) 2369.CrossRefGoogle Scholar
  18. 18.
    C. Jimenez, J. Perriere, I. Vickridge, J. P. Enard and J. M. Albella, Surf. Coatings Technol. 45 (1991) 147.CrossRefGoogle Scholar
  19. 19.
    M. Balat, J. Eur. Ceram. Soc. 16 (1996) 55.CrossRefGoogle Scholar
  20. 20.
    C. Wagner, J. Appl. Phys. 29 (1958) 1295.CrossRefGoogle Scholar
  21. 21.
    M. Balat, G. Flamant, G. Male and G. Pichelin, J. Mater. Sci. 27 (1992) 697.CrossRefGoogle Scholar
  22. 22.
    M. Balat, P. Peze, M. Lebrun and G. Olalde, Surf Coatings Technol. 60 (1993) 587.CrossRefGoogle Scholar
  23. 23.
    M. Balat, C. Dupuy and D. Mocaer, J. High Temp. Chem. Processes 4 (1995) 25.Google Scholar
  24. 24.
    G. Eriksson, Chem. Scripta 8 (1973) 100.Google Scholar
  25. 25.
    R. D. Bird, W. E. Steward and E. N. Lightfoot, Transport phenomena (Wiley, New York, 1960).Google Scholar
  26. 26.
    Thermodata, Université de Grenoble, 38402 St Martin dHères, France.Google Scholar
  27. 27.
    M. W. Chase, J. R. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald and A. N. Syuerud, JANAF Thermodynamical Tables, 3rd Edn J. Phys. Ref. Data 14 (1985).Google Scholar
  28. 28.
    Z. Panek, J. Am. Ceram. Soc. 78 (1995) 1087.CrossRefGoogle Scholar
  29. 29.
    M. Hillert, S. Jonsson and B. Sundman, Z. Metallkde 83 (1992) 648.Google Scholar
  30. 30.
    B. Jr. Fegley, J. Am. Ceram. Soc. 64 (1981) C–124.CrossRefGoogle Scholar
  31. 31.
    Y. S. Touloukian and D. P. De Witt, Thermal radiative properties Nonmetallic solids, Vol. 8 (Plenum, New York, 1972).Google Scholar
  32. 32.
    L. Ortega, Thèse de Doctorat, Universitè de Grenoble I, France (1993).Google Scholar
  33. 33.
    F. Bosco and P. Avouris, Phys. Rev. B 38 (1988) 3937.Google Scholar
  34. 34.
    F. G. Bell and L. Ley, Phys. Chem. B 37 (1988) 8383.Google Scholar
  35. 35.
    R. Saoudi, G. Hollinger and A. Straboni, J. Phys. III Fr. 4 (1994) 881.Google Scholar
  36. 36.
    J. A. Taylor, Appl. Surf. Sci. 7 (1981) 168.CrossRefGoogle Scholar
  37. 37.
    C. D. Wagner, D. E. Passoja, H. F. Hillery, T. G. Kinisky, H. A. Six, W. T. Jansen and J. A. Taylor, J. Vac. Sci. Technol. 21 (1982) 933.CrossRefGoogle Scholar
  38. 38.
    R. Berjoan, E. Beche, J. A. Roger and C. H. S. Dupuy, J. High Temp. Chem. Process. 3 (1994) 555.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
    • 1
    • 1
  1. 1.Institut de science et de genie des Materiaux et Procedes (IMP-CNRS), BP5Font-Romeu-Odeillo CedexFrance

Personalised recommendations