Journal of Materials Science

, Volume 32, Issue 5, pp 1371–1379 | Cite as

Yield criteria for amorphous glassy polymers

  • M RINK


Three amorphous polymers, polymethyl methacrylate, polystyrene and polycarbonate were tested in uniaxial tension, uniaxial compression, plane strain compression and simple shear, over a range of temperatures. In each test, the yield point was precisely determined via residual strain measurements after unloading. With the yield stresses determined for these four different stress states, two pressure dependent shear yield criteria, i.e, the modified Von Mises and the modified Tresca criteria, were checked and compared. It is shown that (i) in each case (material, temperature, initial ageing state), the yield locus is satisfactorily described by either one or the other of the two criteria, and (ii) each criterion can be associated with a specific deformation mode (either homogeneous or localized in shear bands). As for the temperature dependence of the yield stress sensitivity to the hydrostatic pressure, it appears to be related to the glass transition temperature (Tg) and more precisely to the α and β relaxations. Finally, the pressure dependence of the yield stress can be possibly explained as being due to two effects: (i) the influence of pressure on molecular motions leading to yielding and (ii) the influence of pressure on the microstructural state.


PMMA Uniaxial Compression Uniaxial Tension Residual Strain Maximum Shear Stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Hill, “The mathematical theory of plasticity” (OUP, Oxford, 1967).Google Scholar
  2. 2.
    S. Rabinowitz, I. M. Ward and J. S. C. Parry, J. Mater. Sci. 5 (1970) 29.CrossRefGoogle Scholar
  3. 3.
    I. M. Ward, ibid. 6 (1971) 1397.CrossRefGoogle Scholar
  4. 4.
    J. A. Sauer, Polym. Engng Sci. 17 (1977) 150.CrossRefGoogle Scholar
  5. 5.
    S. Rabinowitz and P. Breadmore, J. Mater. Sci. 9 (1974) 81.CrossRefGoogle Scholar
  6. 6.
    C. B. Bucknall, “Toughened plastics” (Applied Science, London, 1977).CrossRefGoogle Scholar
  7. 7.
    W. Withney and R. D. Andrews, J. Polym. Sci. Part C 16 (1967) 2981.CrossRefGoogle Scholar
  8. 8.
    J. C. Bauwens, J. Polym. Sci. Part A-2 8 (1970) 893.CrossRefGoogle Scholar
  9. 9.
    P. B. Bowden and J. A. Jukes, J. Mater. Sci. 7 (1972) 52.CrossRefGoogle Scholar
  10. 10.
    R. A. Bubeck, S. E. Bales and H. E. Lee, Polym. Engng Sci. 24 (1984) 1142.CrossRefGoogle Scholar
  11. 11.
    S. S. Sterstein and L. Ongchin, ACS Polym. Prepr. 10 (1969) 117.Google Scholar
  12. 12.
    C. Bauwens-Crowet, J. C. Bauwens and G. Homes, J. Mater Sci. 7 (1972) 176.CrossRefGoogle Scholar
  13. 13.
    R. Bianchi and A. Testi, PhD thesis, Politecnico di Milano (1991).Google Scholar
  14. 14.
    M. Rink, R. Frassine and A. Pavan, in Proceedings of “Polymer Blends II”, Polymat’94, London, September 1994, p. 513.Google Scholar
  15. 15.
    R. Quinson, J. Perez, M. Rink and A. Pavan, J. Mater. Sci. 31 (1996) 4387.CrossRefGoogle Scholar
  16. 16.
    C. G’Sell, in “Plastic deformation of amorphous and semi crystalline polymers” edited by B. Escaig and C. G’Sell, (les Ulis, 1982).Google Scholar
  17. 17.
    J. G. Williams and H. Ford, J. Mech. Engng Sci. 6 (1964) 405.CrossRefGoogle Scholar
  18. 18.
    A. P. Green, Phil. Mag. 42 (1951) 900.CrossRefGoogle Scholar
  19. 19.
    P. B. Bowden in “Physics of glassy polymers”, edited by R. H. Haward (Applied Science, London 1973) Ch. 5.Google Scholar
  20. 20.
    S. S. Sternstein, L. Ongchin and A. Silverman, Appl. Polym. Symp. 7 (1968) 175.Google Scholar
  21. 21.
    C. G’Sell, S. Boni and S. Shrivastava, J. Mater. Sci. 18 (1983) 903.Google Scholar
  22. 22.
    C. Bauwens-Crowet, ibid. 8 (1973) 968.CrossRefGoogle Scholar
  23. 23.
    S. Matsuoka, in “Failure of Plastics”, edited by W. Brostow and R. Corneliussen ch. 3 (Hanser, Munich, 1986).Google Scholar
  24. 24.
    G. I. Taylor and F. R. S. Yarrow, Proc. Roy. Soc. Section A 145 (1934) 1.CrossRefGoogle Scholar
  25. 25.
    P. B. Bowden and S. Raha, Phil. Mag. 22 (1970) 463.CrossRefGoogle Scholar
  26. 26.
    M. Ishikawa and I. Narisawa, J. Mater. Sci. 18 (1983) 2826.CrossRefGoogle Scholar
  27. 27.
    A. W. Christiansen, E. Baer and S. V. Radcliffe, Phil. Mag. 24 (1971) 451.CrossRefGoogle Scholar
  28. 28.
    J. C. M. Li ad J. B. C. Wu, J. Mater. Sci. 11 (1976) 445.CrossRefGoogle Scholar
  29. 29.
    A. Souahi, PhD thesis, INP Lorraine (1992).Google Scholar
  30. 30.
    J. M. O’Reilly, J. Polym. Sci. 57 (1962) 429.CrossRefGoogle Scholar
  31. 31.
    G. Williams, Trans. Farad. Soc. 62 (1966) 2091.CrossRefGoogle Scholar
  32. 32.
    H. Sasabe and S. Saito, J. Polym. Sci. Part A2 6 (1968) 1401.CrossRefGoogle Scholar
  33. 33.
    F. Shnaffer and B. J. Jungnickel, J. Macr. Sci. Phys. B 52 (1993) 343.Google Scholar
  34. 34.
    R. Quinson, J. Perez, J. M. Murraciole and Y. Germain, Polymer 36 (1995) 743.CrossRefGoogle Scholar
  35. 35.
    O. A. Hasan, M. C. Boyce and S. Berko, J. Polym. Sci. Part B 31 (1993) 185.CrossRefGoogle Scholar
  36. 36.
    A. S. Argon, Phil. Mag. 28 (1973) 839.CrossRefGoogle Scholar
  37. 37.
    H. Eyring, J. Chem. Phys. 4 (1936) 283.CrossRefGoogle Scholar
  38. 38.
    M. B. Mangion, J. Y. Cavaille and J. Perez, Phil. Mag. A 66 (1992) 773.CrossRefGoogle Scholar
  39. 39.
    N. Ouali, M. B. M. Mangion and J. Perez, ibid. 67 (1993) 827.CrossRefGoogle Scholar
  40. 40.
    A. Y. Goldman, V. L. Maksimov and V. N. Kestelman, Polym. Engng. Sci. 31 (1991) 1493.CrossRefGoogle Scholar
  41. 41.
    J. Perez, J. Y. Cavaille, J. Tatibouet, J. Chim. Phys. 87 (1990) 1923.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
    • 2
  • M RINK
  1. 1.Laboratoire GEMPPMINSAVilleurbanne CedexFrance
  2. 2.Dipartimento di Chimica Industriale e Ingegneria Chimica Giulio NattaPolitecnico di MilanoMilanoItaly

Personalised recommendations