Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment

  • H. M KIM


The present authors previously showed that titanium metal forms a bone-like apatite layer on its surface in a simulated body fluid (SBF), when it has been treated with a NaOH solution to form a sodium titanate hydrogel layer on its surface. This indicates that the NaOH-treated Ti metal bonds to living bone. The gel layer as-formed is, however, mechanically unstable. In the present study, the NaOH-treated Ti metal was heat treated at various temperatures in order to convert the gel layer into a more mechanically stable layer. The gel layer was dehydrated and transformed into an amorphous sodium titanate layer at 400–500°C, fairly densified at 600°C and converted into crystalline sodium titanate and rutile above 700°C. The induction period for the apatite formation on the NaOH-treated Ti metal in SBF increased with the transformation of the surface gel layer by the heat treatment. Ti metal heat treated at 600°C, however, showed a fairly short induction period as well as high mechanical stability, since it was covered with a fairly densified amorphous layer.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. DE GROOT, R. G. T. GEESINK, C. P. A. T. KLEIN and P. SEREKIAN, J. Biomed. Mater. Res. 21 (1987) 1375.Google Scholar
  2. 2.
    S. D. COOK, K. A. THOMAS and M. JARCHO, Clin. Orthop.230 (1988) 303.Google Scholar
  3. 3.
    K. DE GROOT, J. Biomed. Mater. Res. 23 (1989) 1367.Google Scholar
  4. 4.
    P. DUCHEYNE, S. RADIN, M. HEUGHBAERT and J. C. HEUGHBAERT, Biomaterials 11 (1990) 244.Google Scholar
  5. 5.
    W. R. LACEFIELD, in ‘‘An Introduction to Bioceramics’’ edited by L. L. Hench and J. Wilson (World Science, Singapore, 1993) p. 223.Google Scholar
  6. 6.
    H. HERØ, H. WIE, R. B. JØRGENSEN and I. E. RUYTER, J. Biomed. Mater. Res. 28 (1994) 344.Google Scholar
  7. 7.
    L. TORRISI and G. FOTI, Appl. Phys. Lett. 62 (1993) 237.Google Scholar
  8. 8.
    C. M. COTELL, Appl. Surf. Sci. 69 (1993) 140.Google Scholar
  9. 9.
    Y. OTSUKA, M. MATSUURA, N. CHIDA, M. YOSHI NARI, T. SUMII and T. DERAND, Surf. Coat. Technol. 65 (1994) 1049.Google Scholar
  10. 10.
    T. BRENDEL, A. ENGEL and C. RÜSSEL, J. Mater. Sci.: Mater. Med. 3 (1992) 175.Google Scholar
  11. 11.
    Q. QUI, P. VINCENT, B. LOWENBERG, M. SAYER and J. E. DAVIES, Cell Mater. 3 (1993) 351.Google Scholar
  12. 12.
    K. DE GROOT, J. Ceram. Soc. Jpn. 99 (1991) 943.Google Scholar
  13. 13.
    C. P. A. T. KLEIN, J. G. C. WOLKE and K. DE GROOT, in ‘‘An Introduction to Bioceramics’’ edited by L. L. Hench and J. Wilson (World Science, Singapore, 1993) p. 199.Google Scholar
  14. 14.
    P. DUCHEYNE, W. VAN RAEMDONCK, J. C. HEUGHBAERT and M. HEUGHBAERT, Biomaterials 7 (1986) 97.Google Scholar
  15. 15.
    R. G. T. GEESINK, K. DE GROOT and C. P. A. T. KLEIN, Clin. Orthop. 225 (1987) 147.Google Scholar
  16. 16.
    K. A. THOMAS, J. F. KAY, S. D. COOK and M. JARCHO, J. Biomed. Mater. Res. 21 (1987) 1395.Google Scholar
  17. 17.
    W. R. LACEFIELD, in ‘‘Bioceramics: Material Characteristics Versus In VitroBehavior’’ edited by P. Ducheyne and J. Lemons (Academic Science, New York, 1988) p. 72.Google Scholar
  18. 18.
    C. P. A. T. KLEIN, P. PATKA, H. B. M. VAN DER LUBBE, J. G. C. WOLKE and K. DE GROOT, J. Biomed. Mater. Res. 25 (1991) 53.Google Scholar
  19. 19.
    C. P. A. T. KLEIN, J. G. C. WOLKE, J. M. A. DE BLIEKHOGEWRST and K. DE GROOT, ibid. 28 (1994) 961.Google Scholar
  20. 20.
    K. A. GROSS and C. C. BERNDT, J. Mater. Sci.: Mater. Med. 5 (1994) 219.Google Scholar
  21. 21.
    K. A. MANN, A. A. EDIDIN, R. K. KINOSHITA and M. T. MANLEY, J. Appl. Biomater. 5 (1994) 285.Google Scholar
  22. 22.
    C. Y. CHANG, B. C. WANG, E. CHANG and B. C. WU, J. Mater. Sci.: Mater. Med. 6 (1996) 249.Google Scholar
  23. 23.
    Idem, ibid. 6 (1996) 258.Google Scholar
  24. 24.
    L. L. HENCH and A. E. CLARK, in ‘‘Biocompatibility of Orthopedic Implant’’ edited by D. F. Williams, Vol. 2 (CRC Press, Boca Raton, 1982) p. 129.Google Scholar
  25. 25.
    T. KITSUGI, T. NAKAMURA, T. YAMAMURO, T. KOKUBO, T. SHIBUYA and M. TAKAGI, J. Biomed. Mater. Res. 21 (1987) 1255.Google Scholar
  26. 26.
    Ö. H. ANDERSON, K. H. KARLSON, K. KANGASNIEMI and A. YLIURPO, Glastechn. Ber. 61 (1988) 300.Google Scholar
  27. 27.
    T. KOKUBO, Biomaterials 12 (1991) 155.Google Scholar
  28. 28.
    L. L. HENCH, J. Amer. Ceram. Soc. 74 (1991) 1487.Google Scholar
  29. 29.
    T. KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J. Biomed. Mater. Res. 24 (1990) 721.Google Scholar
  30. 30.
    M. R. FILGUERIAS, G. R. TORRE and L. L. HENCH, ibid. 27 (1993) 445.Google Scholar
  31. 31.
    T. KOKUBO, F. MIYAJI, H. M. KIM and T. NAKAMURA, J. Amer. Ceram. Soc. 79 (1996) 1127.Google Scholar
  32. 32.
    H. M. KIM, F. MIYAJI, T. KOKUBO and T. NAKAMURA, J. Ceram. Soc. Jpn. 105 (1997) 111.Google Scholar
  33. 33.
    B. C. BUNKER, C. H. F. PEDEN, D. R. TALLANT, S. L. MARTINEZ and G. L. TURNER, Mater. Res. Soc. Symp. Proc. 121 (1988) 105.Google Scholar
  34. 34.
    S. SAKKA, F. MIYAJI and K. FUKUMI, J. Non-Cryst. Solids 112 (1989) 64.Google Scholar
  35. 35.
    F. MIYAJI, T. YOKO, H. KOZUKA and S. SAKKA, J. Mater. Sci. 26 (1989) 248.Google Scholar
  36. 36.
    M. OCÂNA, J. V. GARCIA-RAMOS and C. J. SERNA, J. Amer. Ceram. Soc. 75 (1992) 2010.Google Scholar
  37. 37.
    P. LI, C. OHTSUKI, T. KOKUBO, K. NAKANISHI, N. SOGA, T. NAKAMURA, T. YAMAMURO and K. DE GROOT, J. Biomed. Mater. Res. 28 (1994) 7.Google Scholar
  38. 38.
    P. LI, I. KANGASNIEMI, K. DE GROOT and T. KOKUBO, J. Amer. Ceram. Soc. 77 (1994) 1307.Google Scholar
  39. 39.
    C. OHTSUKI, T. KOKUBO and T. YAMAMURO, J. Non-Cryst. Solids 143 (1992) 84.Google Scholar
  40. 40.
    J. GAMBLE, ‘‘Chemical Anatomy Physiology and Pathology of Extracellular Fluid’’, 6th Edn (Harvard University Press, 1967).Google Scholar
  41. 41.
    W. NEUMAN and M. NEUMAN, ‘‘The Chemical Dynamics of Bone Mineral’’ (University of Chicago, Chicago, 1958).Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • H. M KIM
    • 1
    • 2
    • 1
    • 2
  1. 1.Department of Material Chemistry, Faculty of EngineeringKyoto UniversityYoshida, Sakyo-ku KyotoJapan
  2. 2.Department of Orthopaedic Surgery, Faculty of MedicineKyoto UniversityShogoin, Sakyo-ku KyotoJapan

Personalised recommendations