Journal of Materials Science

, Volume 32, Issue 5, pp 1357–1363 | Cite as

Subsolidus phase relationships in the ZrO2-rich part of the ZrO2–Zr3N4 system



Zirconia can be stabilized by incorporation of nitrogen. The phase relationships in the ZrO2-rich part of the system ZrO2–Zr3N4 have been investigated using high-temperature X-ray methods. At temperatures above 1000°C, a tetragonal and a cubic phase with randomly distributed vacancies exists, depending on the amount of incorporated nitrogen. This high-temperature behaviour is similar to that of systems like ZrO2–Y2O3, which is another indication for the important role of anion vacancies in zirconia systems. Below 1000°C, β-type phases with an ordered arrangement of anion vacancies are stable.


Zirconia Type Phase Anion Vacancy Position Sensitive Detector Incorporated Nitrogen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Stubican, “Advances in Ceramics”, Vol. 24, “Science and Technology of Zirconia III”, edited by S. Somiya, N. Yamamoto, H. Yanagida (The American Ceramic Society, Westerville, 1988) p. 71.Google Scholar
  2. 2.
    P. Duwez, F. Odell and F. H. Brown, J. Am. Ceram. Soc. 35 (1952) 107.CrossRefGoogle Scholar
  3. 3.
    C. F. Grain, ibid. 50 (1967) 288.CrossRefGoogle Scholar
  4. 4.
    V. S. Stubican and S. P. Ray, ibid. 60 (1977) 534.CrossRefGoogle Scholar
  5. 5.
    H. G. Scott, J. Mater. Sci. 72 (1977) 311.CrossRefGoogle Scholar
  6. 6.
    V. S. Stubican, R. C. Hink and S. P. Ray, J. Am. Ceram. Soc. 61 (1978) 17.CrossRefGoogle Scholar
  7. 7.
    J. R. Hellmann and V. S. Stubican, ibid. 66 (1983) 260.CrossRefGoogle Scholar
  8. 8.
    C. Pascual and P. Duran, ibid. 66 (1983) 23.CrossRefGoogle Scholar
  9. 9.
    J. C. Gilles, Bull. Soc. Chim. Fr. 22 (1962) 2118.Google Scholar
  10. 10.
    R. Collongues, J. C. Gilles, A. M. Lejus, M. Perez, Y Jorba and D. Michel, Mater. Res. Bull. 2 (1967) 837.CrossRefGoogle Scholar
  11. 11.
    Y. B. Cheng and D. P. Thompson, Special Ceram. 9 (1992) 149.Google Scholar
  12. 12.
    Idem, J. Am. Ceram. Soc. 76 (1993) 683.CrossRefGoogle Scholar
  13. 13.
    M. Lerch, ibid., in press.CrossRefGoogle Scholar
  14. 14.
    M. Lerch, F. Krumeich, and R. Hock, in “Transformation Kinetics and Reactivity of Solids”, edited by P. Grange et al., Louvain-la-Neuve, (1995) p. 123.Google Scholar
  15. 15.
    R. Hock, M. Lerch, K. S. Knight and H. Boysen, Z. Kristallogr. Suppl. 9 (1995) 298.Google Scholar
  16. 16.
    M. Lerch, R. Hock and E. FÜglein, ibid. 9 (1995) 193.Google Scholar
  17. 17.
    M. Lerch, L. Jacobsen and G. MÜller, ibid. 8 (1994) 256.Google Scholar
  18. 18.
    R. C. Garvie and P. S. Nicholson, J. Am. Ceram. Soc. 55 (1972) 303.CrossRefGoogle Scholar
  19. 19.
    M. Lerch, D. Walter, O. RahÄuser, W. Laqua and K. S. Knight, Z. Kristallogr. Suppl. 9 (1995) 305.Google Scholar
  20. 20.
    M. Yashima, S. Sasaki, M. Kakihana, Y. Yamaguchi, H. Arashi and M. Yoshimura, Acta Crystallogr. B50 (1994) 663.CrossRefGoogle Scholar
  21. 21.
    J. W. Adams, H. H. Nakamura, R. P. Ingel and R. W. Rice, J. Am. Ceram. Soc. 68 (1985) 228.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
  1. 1.SilicatchemieUniversitat WurzburgGermany

Personalised recommendations