Glycoconjugate Journal

, Volume 14, Issue 4, pp 523–529 | Cite as

Computational studies of sialyllactones: methods and uses

  • Abby L Parrill
  • Nellie Mamuya
  • Daniel P Dolata
  • Jacquelyn Gervay
Article

Abstract

N-Acetylneuraminic acid (1) is a common sugar in many biological recognition processes. Neuraminidase enzymes recognize and cleave terminal sialic acids from cell surfaces. Viral entry into host cells requires neuraminidase activity, thus inhibition of neuraminidase is a useful strategy for development of drugs for viral infections. A recent crystal structure for influenza viral neuraminidase with sialic acid bound shows that the sialic acid is in a boat conformation [Prot Struct Funct Genet 14: 327 (1992)]. Our studies seek to determine if structural pre-organization can be achieved through the use of sialyllactones. Determination of whether siallylactones are pre-organized in a binding conformation requires conformational analysis. Our inability to find a systematic study comparing the results obtained by various computational methods for carbohydrate modeling led us to compare two different conformational analysis techniques, four different force fields, and three different solvent models. The computational models were compared based on their ability to reproduce experimental coupling constants for sialic acid, sialyl-1,4-lactone, and sialyl-1,7-lactone derivatives. This study has shown that the MM3 forcefield using the implicit solvent model for water implemented in Macromodel best reproduces the experimental coupling constants. The low-energy conformations generated by this combination of computational methods are pre-organized toward conformations which fit well into the active site of neuraminidase.

Sialyllactones neuraminidase computational models coupling constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Phillips M, Nudelman E, Gaeta F, Perez M, Singhal A, Haakomori C, Paulson J (1990) Science 250: 1130-32.PubMedCrossRefGoogle Scholar
  2. 2.
    Fukushima K, Hirota M, Terasake P, Wakisaka A, Togashi H, Chia D, Suyama N, Fukushi Y, Nudelman E, Hakomori S (1984) Cancer Res 44: 5279-85.PubMedGoogle Scholar
  3. 3.
    Finne J (1985) Trends in Biochemical Sciences 10: 129-32.CrossRefGoogle Scholar
  4. 4.
    Klenk H, Rott R (1988) Adv Virus Res 34: 247-79.PubMedCrossRefGoogle Scholar
  5. 5.
    Varghese J, McKimm-Breschkin J, Caldwell J, Kortt A, Colman P (1992) PROTEINS: Structure, Function, and Genetics 14: 327-32.CrossRefGoogle Scholar
  6. 6.
    von Itzstein M, Wu W-Y, Kok GB, Pegg MS, Dyason JC, Jin B, Phan TV, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR (1994) J Med Chem 37: 616-24.PubMedCrossRefGoogle Scholar
  7. 7.
    Asensio J, Jimenez-Barbero J (1995) Biopolymers 35: 55-73.PubMedCrossRefGoogle Scholar
  8. 8.
    Burkert U, Gohl A, Schmidt R (1980) Carbohydr Res 85: 1-14.CrossRefGoogle Scholar
  9. 9.
    Christian R, Schulz G (1987) Carbohydr Res 162: 1-11.PubMedCrossRefGoogle Scholar
  10. 10.
    Dauchez M, Derreumaux P, Lagant P, Vergoten G (1995) J Comput Chem 16: 188-99.CrossRefGoogle Scholar
  11. 11.
    Glennon T, Zheng Y, Le Grand S, Shutzberg B, Merz K (1994) J Comput Chem 15: 1019-40.CrossRefGoogle Scholar
  12. 12.
    Gouvion C, Mazeau K, Tvaroska I (1995) J Mol Struct 344: 157-70.CrossRefGoogle Scholar
  13. 13.
    Ha S, Giammona A, Field M (1988) Carbohydr Res 180: 207-21.PubMedCrossRefGoogle Scholar
  14. 14.
    Homans S (1990) Biochem 29: 9110-18.CrossRefGoogle Scholar
  15. 15.
    Koca J, Pérez S, Imberty A (1995) J Comput Chem 16: 296-310.CrossRefGoogle Scholar
  16. 16.
    Kozár T, Petrák F, Gálová Z (1990) Carbohydr Res 204: 27-36.CrossRefGoogle Scholar
  17. 17.
    Melberg S, Rasmussen K (1979) Carbohydr Res 76: 23-37.CrossRefGoogle Scholar
  18. 18.
    Rivera-Sagredo A (1992) J Carbohydrate Chem 11: 903-19.Google Scholar
  19. 19.
    Woods R, Dwek R, Edge C, Fraser-Reid B (1995) J Phys Chem 11: 3832-46.CrossRefGoogle Scholar
  20. 20.
    Christian R, Schulz G, Brandstetter H, Zbiral E (1987) Carbohydr Res 162: 1-11.PubMedCrossRefGoogle Scholar
  21. 21.
    Molecular Modelling for the Macintosh by Anders Sundin, Instar Software.Google Scholar
  22. 22.
    Burkert U, Allinger N (1982) Molecular Mechanics. Washington, DC American Chemical Society: 177.Google Scholar
  23. 23.
    Mohamadi F, Richards N, Guida W, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still W (1990) J Comput Chem 11: 440-67.CrossRefGoogle Scholar
  24. 24.
    Walters WP, Stahl MT, Parrill AP, Dolata DP (1900) Paper Number 127, 209th American Chemical Society National Meeting & Exposition, Anaheim, CA.Google Scholar
  25. 25.
    Mayo S, Olafson B, Goddard W, III (1990) J Phys Chem 94: 8897-9.CrossRefGoogle Scholar
  26. 26.
    Allinger NL, Yuh YH, Lii J-H (1989) J Am Chem Soc 111: 8551, 8566, 8576.CrossRefGoogle Scholar
  27. 27.
    Singh UC, Weiner P, Caldwell J, Kollman PA (1986) AMBER 3.0, University of California, San Francisco.Google Scholar
  28. 28.
    Jorgenson WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79: 926.CrossRefGoogle Scholar
  29. 29.
    Still WC, Tempczyk A, Hawley R, Hendrickson T (1990) J Am Chem Soc 112: 6127-29.CrossRefGoogle Scholar
  30. 30.
    Wiberg KB, Marquez M (1994) J Am Chem Soc 116: 2197-98.CrossRefGoogle Scholar
  31. 31.
    Haasnoot C, De Leeuw F, Altona C (1980) Tetrahedron 36: 2783-92.CrossRefGoogle Scholar
  32. 32.
    Shah A, Walters W, Shah R, Dolata D (1994) Computerized Chemical Data Standards: Databases, Data Interchange, and Informations Systems, ASTM STP 1214.Google Scholar
  33. 33.
    Tvaroska I, Hricovíni M, Petrá ková E (1989) Carbohydr Res 189: 359-62.CrossRefGoogle Scholar
  34. 34.
    Bystrov VF (1976) Progress in NMR Spectroscopy 10: 41-81.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Abby L Parrill
    • 1
  • Nellie Mamuya
  • Daniel P Dolata
  • Jacquelyn Gervay
  1. 1.Department of ChemistryThe University of ArizonaTucsonUSA

Personalised recommendations