Advertisement

Statistics and Computing

, Volume 7, Issue 2, pp 101–114 | Cite as

Suppressing marginal totals from a two-dimensional table to protect sensitive information

  • F. M. Malvestuto
  • M. Moscarini
Article

Abstract

The technique of data suppression for protecting sensitive information in a two-dimensional table from exact disclosure raises the computational problems of testing a given table of censored data for security, and searching for a secure suppression pattern of minimum size for a given table. We provide a polynomial security test to solve the former problem, and prove that the latter problem is intractable in the general case, but can be solved in linear time in the special case in which only sensitive cells are to be protected.

Sensitive data suppression pattern and graph exact disclosure NP-complete problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, N. R. and Wortmann J. C. (1989) Security control methods for statistical databases: a comparative study. ACM Computing Surveys, 21, 515–56.Google Scholar
  2. Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1987) Data Structures and Algorithms, Addison-Wesley, Reading, MA.Google Scholar
  3. Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975) Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, MA.Google Scholar
  4. Bondy, J. A. and Murty, U. S. R. (1976) Graph Theory with Applications, North-Holland, Amsterdam.Google Scholar
  5. Conforti, M. and Rao, M. R. (1987) Some new matroids on graphs: cut sets and max cut problem. Mathematics of Operations Research, 12, 193–204.Google Scholar
  6. Cox, L. H. (1980) Suppression methodology and statistical dis-closure control. J. of the American Statistical Association, Theory and Method Section, 75, 377–85.Google Scholar
  7. Cox, L. H. (1981) Linear sensitivity measures in statistical dis-closure control. Journal of Statistical Planning and Inference, 5, 153–64.Google Scholar
  8. Denning, D. E. and Schlö rer, J. (1983) Inference control for statistical databases. IEEE Computer, 16, 69–82.Google Scholar
  9. Even, S. (1979) Graph Algorithms. Computer Science Press, Po-tomac, MD.Google Scholar
  10. Garey, M. R. and Johnson, D. S. (1979) Computers and Intrac-tability: a Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco, CA.Google Scholar
  11. Garfinkel, R. S. and Nemhauser, G. L. (1972) Integer Pro-gramming, Wiley, New York.Google Scholar
  12. Gusfield, D. (1988) A graph theoretic approach to statistical data security. SIAM Journal of Computing, 17, 552–71.Google Scholar
  13. Johnson, D. S. (1984) The NP-completeness column: an ongoing guide. Journal of Algorithms, 5, 147–60.Google Scholar
  14. Kao, M. Y. and Gusfield, D. (1993) Efficient detection and pro-tection of information in cross tabulated tables I: linear in-variant test. SIAM Journal of Discrete Mathematics, 6, 460–76.Google Scholar
  15. Kelly, P. K., Golden, B. L., and Assad, A. A. (1992) Cell sup-pression: disclosure protection for sensitive tabular data. Networks, 22, 397–417.Google Scholar
  16. Malvestuto, F. M. (1993) A universal-scheme approach to sta-tistical databases containing homogeneous summary tables. ACM Transactions on Database Systems, 18, 678–708.Google Scholar
  17. Malvestuto, F. M. and Moscarini, M. (1990) Query evaluability in statistical databases. IEEE Transactions on Knowledge and Data Engineering, 2, 425–30.Google Scholar
  18. Malvestuto, F. M., Moscarini, M. and Rafanelli, M. (1991) Suppressing marginal cells to protect sensitive information in a two-dimensional statistical table. Proceedings of ACM Symposium onPrinciples of Database Systems”, 252–258. ACM, New York.Google Scholar
  19. Michalewicz, Z. (1991) Security of a statistical database, in Sta-tistical and Scientific Databases (Michalewicz, Z. ed.), Ellis Horwood, Chichester.Google Scholar
  20. Schackis, D. (1993) Manual on disclosure control methods. EUROSTAT Report.Google Scholar
  21. Schrijver, A. (1986) Theory of Linear Integer Programming, Wiley, New York.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • F. M. Malvestuto
    • 1
  • M. Moscarini
    • 1
  1. 1.Department of Information Sciences‘La Sapienza’ University of RomeRomeItaly

Personalised recommendations