Statistics and Computing

, Volume 7, Issue 1, pp 75–83 | Cite as

ADE-4: a multivariate analysis and graphical display software

  • Jean Thioulouse
  • Daniel Chessel
  • Sylvain Dole´dec
  • Jean-Michel Olivier


We present ADE-4, a multivariate analysis and graphical display software. Multivariate analysis methods available in ADE-4 include usual one-table methods like principal component analysis and correspondence analysis, spatial data analysis methods (using a total variance decomposition into local and global components, analogous to Moran and Geary indices), discriminant analysis and within/between groups analyses, many linear regression methods including lowess and polynomial regression, multiple and PLS (partial least squares) regression and orthogonal regression (principal component regression), projection methods like principal component analysis on instrumental variables, canonical correspondence analysis and many other variants, coinertia analysis and the RLQ method, and several three-way table (k-table) analysis methods. Graphical display techniques include an automatic collection of elementary graphics corresponding to groups of rows or to columns in the data table, thus providing a very efficient way for automatic k-table graphics and geographical mapping options. A dynamic graphic module allows interactive operations like searching, zooming, selection of points, and display of data values on factor maps. The user interface is simple and homogeneous among all the programs; this contributes to making the use of ADE-4 very easy for non- specialists in statistics, data analysis or computer science.

Multivariate analysis principal component analysis correspondence analysis instrumental variables canonical correspondence analysis partial least squares regression coinertia analysis graphics multivariate graphics interactive graphics Macintosh HyperCard Windows 95 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bouroche, J. M. (1975) Analyse des données ternaires: la double analyse en composantes principales. Thè se de 3o cycle, Université de Paris VI.Google Scholar
  2. Cadet, P., Thioulouse, J. and Albrecht, A. (1994) Relationships between ferrisol properties and the structure of plant parasitic nematode communities on sugarcane in Martinique (French West Indies). Acta Œcologica, 15, 767–80.Google Scholar
  3. Cailliez, F. and Pages, J. P. (1976) Introduction à l'analyse des données. SMASH: Paris.Google Scholar
  4. Castella, E. and Speight, M. C. D. (1996) Knowledge representation using fuzzy coded variables: an example based on the use of Syrphidae (Insecta, Diptera) in the assessment of riverine wetlands. Ecological Modelling, 85, 13–25.Google Scholar
  5. Cazes, P., Chessel, D. and Dolédec, S. (1988) L'analyse des correspondances internes d'un tableau partitionné: son usage en hydrobiologie. Revue de Statistique Appliquée, 36, 39–54.Google Scholar
  6. Chessel, D. and Mercier, P. (1993) Couplage de triplets statistiques et liaisons espè ces-environnement. In Biométrie et Environnement, Lebreton J. D. and Asselain B. (eds), 15–44. Paris: Masson.Google Scholar
  7. Chevenet, F., Dolé dec, S. and Chessel, D. (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology, 31, 295–309.Google Scholar
  8. Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74, 829–36.Google Scholar
  9. Cleveland, W. S. and Devlin, S. J. (1988) Locally weighted repression: an approach to regression analysis by local fitting. Journal of the American Statistical Association, 83, 596–610.Google Scholar
  10. Devillers, J. and Chessel, D. (1995) Can the enucleated rabbit eye test be a suitable alternative for the in vivo eye test?A chemometrical response. Toxicology Modelling, 1, 21–34.Google Scholar
  11. Dolédec, S. and Chessel, D. (1987) Rythmes saisonniers et composantes stationnelles en milieu aquatique I—Description d'un plan d'observations complet par projection de variables. Acta Œcologica, Œcologia Generalis, 8, 403–26.Google Scholar
  12. Dolé dec, S. and Chessel, D. (1989) Rythmes saisonniers et composantes stationnelles en milieu aquatique II—Prise en compte et élimination d'effets dans un tableau faunistique. Acta Œcologica, Œcologica Generalis, 10, 207–32.Google Scholar
  13. Dolé dec, S. and Chessel, D. (1991) Recent developments in linear ordination methods for environmental sciences. Advances in Ecology, India, 1, 133–55.Google Scholar
  14. Dolé dec, S. and Chessel, D. (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshwater Biology, 31, 277–94.Google Scholar
  15. Dolé dec, S., Chessel, D. and Olivier, J. M. (1995) L'analyse des correspondances dé centré e: application aux peuplements ichtyologiques du Haut-Rhô ne. Bulletin Franç ais de PeÃche et de Pisciculture 3, 143–66.Google Scholar
  16. Dolé dec, S., Chessel, D., ter Braak, C. J. F. and Champely, S. (1996) Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics (in press).Google Scholar
  17. Escoufier, Y. (1980) L'analyse conjointe de plusieurs matrices de donné es. In Biométrie et Temps. Jolivet, M. (ed.), 59–76. Paris: Socié té Franç aise de Biomé trie.Google Scholar
  18. Escoufier, Y. (1987) The duality diagram: a means of better practical applications. In: Developments in Numerical Ecology. Legendre, P. and Legendre, L. (eds.), 139–56. NATO advanced Institute, Series G. Berlin: Springer Verlag.Google Scholar
  19. Foucart, T. (1978) Sur les suites de tableaux de contingence indexé s par le temps. Statistique et Analyse des données, 2, 67–84.Google Scholar
  20. Gabriel, K. R. (1971) The biplot graphical display of matrices with application to principal component analysis. Biometrika, 58, 453–67.Google Scholar
  21. Gabriel, K. R. (1981) Biplot display of multivariate matrices for inspection of data and diagnosis. In Interpreting multivariate data. Barnett, V. (ed.), 147–74. New York: John Wiley and Sons.Google Scholar
  22. Geladi, P. and Kowalski, B. R. (1986) Partial least-squares regression: a tutorial. Analytica Chimica Acta, 1, 185, 19–32.Google Scholar
  23. Good, P. (1993) Permutation tests. New-York: Springer-Verlag.Google Scholar
  24. Greenacre, M. (1984) Theory and Applications of Correspondence Analysis. London: Academic Press.Google Scholar
  25. Hö skuldsson, A. (1988) PLS regression methods. Journal of Chemometrics, 2, 211–28.Google Scholar
  26. Kevin, V. and Whitney, M. (1972) Algorithm 422. Minimal Spanning Tree [H]. Communications of the Association for Computing Machinery, 15, 273–4.Google Scholar
  27. Lavit, Ch. (1988) Analyse conjointe de tableaux quantitatifs. Paris: Masson.Google Scholar
  28. Lavit, Ch., Escoufier, Y., Sabatier, R. and Traissac, P. (1994) The ACT (Statis method). Computational Statistics and Data Analysis, 18, 97–119.Google Scholar
  29. Lebart, L. (1969) Analyse statistique de la contiguõÈ té. Publication de l'Institut de Statistiques de l'Université de Paris, 28, 81–112.Google Scholar
  30. Lebart, L., Morineau, L. and Warwick, K. M. (1984) Multivariate Descriptive Analysis: Correspondence Analysis and Related Techniques for Large Matrices. New York: John Wiley and Sons.Google Scholar
  31. Lebreton, J. D., Chessel, D., Prodon, R. and Yoccoz, N. (1988a) L'analyse des relations espè ces-milieu par l'analyse canonique des correspondances. I. Variables de milieu quantitatives. Acta Œcologica, Œcologia Generalis, 9, 53–67.Google Scholar
  32. Lebreton, J. D., Richardot-Coulet, M., Chessel, D. and Yoccoz, N. (1988b) L'analyse des relations espè ces-milieu par l'analyse canonique des correspondances. II. Variables de milieu qualitatives. Acta Œcologica, Œcologia Generalis, 9, 137–51.Google Scholar
  33. Lebreton, J. D., Sabatier, R., Banco, G. and Bacou, A. M. (1991) Principal component and correspondence analyses with respect to instrumental variables: an overview of their role in studies of structure-activity and species-environment relationships. In Applied Multivariate Analysis in SAR and Environmental Studies. Devillers, J. and Karcher, W. (eds), 85–114. Dordrecht: Kluwer Academic Publishers.Google Scholar
  34. Lindgren, F. (1994) Third generation PLS. Some elements and applications. Research Group for Chemometrics. Department of Organic Chemistry, 1–57. UmeaŒ: UmeaŒ University.Google Scholar
  35. Mahalanobis, P. C. (1936) On the generalized distance in statistics. Proceedings of the National Institute of Sciences of India, 12, 49–55.Google Scholar
  36. Manly, B. F. (1994) Multivariate Statistical Methods. A Primer. London: Chapman and Hall.Google Scholar
  37. Mantel, M. (1967) The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–20.Google Scholar
  38. Næs, T. (1984) Leverage and influence measures for principal component regression. Chemometrics and Intelligent Laboratory Systems, 5, 155–68.Google Scholar
  39. Nishisato, S. (1980) Analysis of Categorical Data: Dual Scaling and its Applications. London: University of Toronto Press.Google Scholar
  40. Noy-Meir, I. (1973) Data transformations in ecological ordination. I. Some advantages of non-centering. Journal of Ecology, 61, 329–41.Google Scholar
  41. Okamoto, M. (1972) Four techniques of principal component analysis. Journal of the Japanese Statistical Society, 2, 63–9.Google Scholar
  42. Persat, H., Nelva, A. and Chessel, D. (1985) Approche par l'analyse discriminante sur variables qualitatives d'un milieu lotique le Haut-Rhone français. Acta Œcologica, Œcologia Generalis, 6, 365–81.Google Scholar
  43. Saporta, G. (1975) Liaisons entre plusieurs ensembles de variables et codage de données qualitatives. Thè se de 3o cycle, Université Paris VI.Google Scholar
  44. Takeuchi, K., Yanai, H. and Mukherjee, B. N. (1982) The Foundations of Multivariate Analysis. A Unified Approach by Means of Projection onto Linear Subspaces. New York: John Wiley and Sons.Google Scholar
  45. Tenenhaus, M. and Young, F. W. (1985) An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data. Psychometrika, 50, 91–119.Google Scholar
  46. ter Braak, C. J. F. (1987a) The analysis of vegetationenvironment relationships by canonical correspondence analysis. Vegetatio, 69, 69–77.Google Scholar
  47. ter Braak, C. J. F. (1987b) Unimodal Models to Relate Species to Environment. Wageningen: Agricultural Mathematics Group.Google Scholar
  48. Thioulouse, J. and Chessel, D. (1987) =Les analyses multi-tableaux en écologie factorielle. I. De la typologie d'é tat à la typologie de fonctionnement par l'analyse triadique. Acta Œcologica, Œcologia Generalis, 8, 463–80.Google Scholar
  49. Thioulouse, J. and Chessel, D. (1992) A method for reciprocal scaling of species tolerance and sample diversity. Ecology, 73, 670–80.Google Scholar
  50. Thioulouse, J., Chessel, D. and Champely, S. (1995) Multivariate analysis of spatial patterns: a unified approach to local and global structures. Environmental and Ecological Statistics, 2, 1–14.Google Scholar
  51. Thioulouse, J. and Lobry, J. R. (1995) Co-inertia analysis of amino-acid physicochemical properties and protein composition with the ADE package. Computer Applications in the Biosciences, 11, 3, 321–9.Google Scholar
  52. Thioulouse, J. and Chevenet, F. (1996) NetMul, a World-Wide Web user interface for multivariate analysis software. Computational Statistics and Data Analysis, 21, 369–72.Google Scholar
  53. Thioulouse, J. (1996) Towards better graphics for multivariate analysis: the interactive factor map. Computational Statistics, 11, 11–21.Google Scholar
  54. Tomassone, R., Danzard, M., Daudin, J.-J. and Masson, J. P. (1988) Discrimination et classement. Paris: Masson.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Jean Thioulouse
    • 1
  • Daniel Chessel
    • 1
  • Sylvain Dole´dec
  • Jean-Michel Olivier
    • 1
  1. 1.Laboratoire de Biome´trie, Ge´ne´tique et Biologie des PopulationsUniversite´ Lyon 1Villeurbanne CedexFrance

Personalised recommendations