The response of primary rat and human osteoblasts and an immortalized rat osteoblast cell line to orthopaedic materials: comparative sensitivity of several toxicity indices



When studying the biocompatibility of orthopaedic biomaterials it isoften necessary to discriminate between responses which show mild cytotoxicity.It is therefore essential to use a very sensitive index of toxicity. We havecompared the sensitivity of four well-established indices of toxicity: totalcell protein content, leakage of lactate dehydrogenase (LDH), reducedglutathione content and the MTT assay, with that of a novel index, alkalinephosphatase (ALP) activity. Comparisons were made by detecting nickel chloridetoxicity in osteoblasts. ALP activity, the novel method, proved the mostsensitive index of toxicity and it provides a convenient automated assay forassessing the interactions of materials with osteoblasts. The responses tonickel chloride and to aqueous extracts prepared from carbon fibre reinforcedepoxy and polyetheretherketone (peek), two candidate materials for orthopaedicimplants, were compared in primary and immortalized rat osteoblasts, and !in primary human osteoblasts. Although the immortalized rat osteoblast cell line,FFC, was consistently the most sensitive cell type, the responses of the humancells and the FFC cell line were similar in terms of ALP activity throughout therange of nickel concentrations studied. Neither peek nor epoxy material extractsshowed a significant decrease in the MTT or ALP responses in any of the threecell types. Our data suggest that immortalized rat osteoblasts may provide anin vitro model system for screening the biocompatibility of orthopaedicpolymers.


Toxicity Carbon Fibre Lactate Dehydrogenase Aqueous Extract Reducedglutathione 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. CARMICHAEL, W. G. deGRAFF, A. F. GAZDAR, J. D. MINNA and J. B. MITCHELL, Cancer Res. 47 (1987) 936.Google Scholar
  2. 2.
    M. C. ALLEY, D. A. SCUDIERO, A. MONKS, M. L. HURSEY, M. J. CZERWINSKI, D. L. FINE, B. J. ABBOT, J. G. MAYO, R. H. SHOEMAKER and M. R. BOYD, ibid. 48 (1988) 589.Google Scholar
  3. 3.
    H. WAN, R. WILLIAMS, P. DOHERTY and D. F. WILLIAMS, J. Mater. Sci. Mater. Med. 5 (1994) 154.Google Scholar
  4. 4.
    M. D. SMITH, J. C. BARBENEL, J. M. COURTNEY and M. H. GRANT, Int. J. Art. Org. 15 (1992) 191.Google Scholar
  5. 5.
    J. A. PLUMB, R. MILROY and S. B. KAYE, Cancer Res. 49 (1989) 4435.Google Scholar
  6. 6.
    A. MEISTER. In “The liver: biology and pathobiology”, edited by I. M. Arias, W. B. Jakoby, H. Popper, D. Schachter and D. A. Shafritz (Raven Press, New York, 1988) p. 401.Google Scholar
  7. 7.
    L. D. DORR, R. BLOEBAUM, J. EMMANUAL and R. MELDRUM, Clin. Orthop. Res. 261 (1990) 82.Google Scholar
  8. 8.
    U. E. PIZZAGLIA, C. MINOIA, L. CECILIANI and C. RICCARDI, Acta. Orthop. Scand. 54 (1983) 574.Google Scholar
  9. 9.
    M. H. GRANT, C. NUGENT and R. BERTRAND, Toxicol. In Vitro 8 (1994) 191.Google Scholar
  10. 10.
    L. J. BEARDEN and F. W. COOKE, J. Biomed. Mater. Res. 14 (1980) 289.Google Scholar
  11. 11.
    C. J. KIRKPATRICK, W. MOHR and O. HAFERKAMP, Res. Exp. Med. 181 (1982) 259.Google Scholar
  12. 12.
    C. MORRISON, R. MACNAIR, C. MACDONALD, A. WYKMAN, I. GOLDIE and M. H. GRANT, Biomaterials 16 (1995) 987.Google Scholar
  13. 13.
    C. MACDONALD, M. VASS, B. WILLETT, A. SCOTT and M. H. GRANT, Human Exp. Toxicol. 13 (1994) 439.Google Scholar
  14. 14.
    M. H. GRANT, N. GRANGER and C. MACDONALD, Brit. J. Clin. Pharmacol. 38 (1994) p. 172.Google Scholar
  15. 15.
    I. BINDERMAN, D. DUKSIN, A. HARELL, E. KATZIR and L. SACHS, J. Cell Biol. 61 (1974) 427.Google Scholar
  16. 16.
    U. KREUZBURG-DUFFY and C. MACDONALD, Immunology 72 (1991) 368.Google Scholar
  17. 17.
    D. C. ANUFORO, D. ACOSTA and R. V. SMITH, In Vitro 14 (1978) 981.Google Scholar
  18. 18.
    R. J. HISSIN and R. HILF, Anal. Biochem. 74 (1976) 214.Google Scholar
  19. 19.
    O. H. LOWRY, N. J. ROSEBROUGH, A. L. FARR and R. J. RANDALL, J. Biol. Chem. 193 (1951) 265.Google Scholar
  20. 20.
    N. F. HARMAND, L. BORDENAVE, R. BAREILLE, A. NAJI, R. JEANDOT, F. ROUAIS and D. DUCASSOU, J. Biomater. Sci. Polymer Edn 2 (1991) 67.Google Scholar
  21. 21.
    A. PIZZOFERRATO, G. CIAPETTI, S. STEA, E. CENNI, C. R. ARCIOLA, D. GRANCHI and L. SAVARINO, Clin. Mater. 15 (1994) 173.Google Scholar
  22. 22.
    L. M. WENZ, K. MERRITT, S. A. BROWN, A. MOET and A. D. STEFFEE, J. Biomed. Mater. Res. 24 (1990) 207.Google Scholar
  23. 23.
    K. A. JOCKISH, S. A. BROWN, T. W. BAUER and K. MERRITT, ibid. 26 (1992) 133.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
    • 1
    • 2
    • 3
    • 3
    • 1
  1. 1.Bioengineering UnitUniversity of StrathclydeGlasgowUK
  2. 2.Department of Biological SciencesUniversity of PaisleyPaisleyUK
  3. 3.Department of OrthopaedicsKarolinska HospitalStockholmSweden

Personalised recommendations