Journal of Materials Science

, Volume 32, Issue 6, pp 1639–1647 | Cite as

SAXS investigation of the structure of high-pressure crystallized poly(ethylene terephthalate): a new nanostructured material?

  • R. K BAYER


The common crystallization conditions of poly(ethylene terephthalate) (PET) were replaced by an anabaric high-pressure crystallization at 320 °C. The PET samples were characterized by differential scanning calorimetry, density and microhardness. The resulting two-phase microstructure was studied by means of absolute small-angle X-ray scattering (SAXS). A complete SAXS analysis utilizing the interface distribution function (IDF) method was carried out. The resulting structure exhibited the presence of stacks of 10 nm thick crystalline lamellae which were separated by amorphous layers of about 1.3 nm thickness. Similar structures have been found after annealing of amorphous metals and have been termed nanocrystalline. Microhardness and structure have been discussed in analogy with the notions from the field of nanostructured materials. Theoretically, a multi-component lamellar two-phase structure has been discussed. The equations derived allow the computation of volume fractions and specific surfaces of the components (different kinds of stacks).


Thickness Distribution Amorphous Layer Ethylene Terephthalate Crystalline Layer Crystalline Lamella 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. SANTA CRUZ, F. J. BALTÀ CALLEJA, H. G. ZACHMANN, N. STRIBECK and T. ASANO,J. Polym. Sci. Polym. Phys. B29 (1991) 819.CrossRefGoogle Scholar
  2. 2.
    C. SANTA CRUZ, N. STRIBECK, H. G. ZACHMANN and F. J. BALTÀ CALLEJA,Macromolecules 24 (1991) 5980.CrossRefGoogle Scholar
  3. 3.
    F. J. BALTÀ CALLEJA, O. ÖHM and R. K BAYER,Polymer 35 (1994) 4775.CrossRefGoogle Scholar
  4. 4.
    F. H. FROES and C. SURJANARAYANA,41 (1989) 12.Google Scholar
  5. 5.
    J. R. WEERTMAN,Mater. Sci. Eng. A166 (1993) 161.CrossRefGoogle Scholar
  6. 6.
    H. GLEITER,Progr. Mater. Sci. 33 (1989) 223.CrossRefGoogle Scholar
  7. 7.
    R. BIRRINGER,Mater. Sci. Eng. A117 (1989) 33.CrossRefGoogle Scholar
  8. 8.
    C. N. J. WAGNER,J. Non-Cryst. Solids 150 (1992) 1.CrossRefGoogle Scholar
  9. 9.
    K. LU, J. T. WANG and W. D. WEI,J. Appl. Phys. 69 (1991) 522.CrossRefGoogle Scholar
  10. 10.
    K. LU, R. LÜCK and B. PREDEL,Acta Metall. Mater. 42 (1994) 2303.CrossRefGoogle Scholar
  11. 11.
    H. R. HILZINGER and H. WARLIMONT,Sci. Am. (German ed.) 7 (1994) 108.Google Scholar
  12. 12.
    J. LIPOWITZ, J. A. RABE, G. A. ZANK, Y. XU and A. ZANGVIL “Nanocrystalline silicon carbide fibers derived from organosilicon polymers” in Chemical Processes in Advanced Materials edited by L. L. Hench and J. K. West (Wiley, New York, 1992) p. 767.Google Scholar
  13. 13.
    Z. F. ZHANG, F. BABONNEAU, R. M. LAINE, Y. MU, J. F. HARROD and J. A. RAHN,J. Am. Ceram. Soc. 74 (1991) 670.CrossRefGoogle Scholar
  14. 14.
    J. LIPOWITZ, J. A. RABE, L. K. FREVEL and R. L. MILLER,J. Mater. Sci. 25 (1990) 2118.CrossRefGoogle Scholar
  15. 15.
    T. ERNY, M. SEIBOLD, O. JARCHOW and P. J. GREIL,J. Am. Ceram. Soc. 76 (1993) 207.CrossRefGoogle Scholar
  16. 16.
    J. K. VASSILIOU, V. MEHROTRA, M. W. RUSSELL, E. P. GIANNELIS, R. D. McMICHAEL, R. D. SHULL and R. F. ZIOLO,J. Appl. Phys. Part1 73 (1993) 5109.CrossRefGoogle Scholar
  17. 17.
    T. HIRAGA, N. TANAKA, K. HAYAMIZU, A. MITO, S. TAKARADA, Y. YAMASAKI, M. NAKAMURA, N. HOSHINO and T. MORIYA,Jpn J. App. Phys. Part1 32 (1993) 1722.CrossRefGoogle Scholar
  18. 18.
    M. MUKHERJEE, A. DATTA and D. CHAKRAVORTY,Appl. Phys. Lett. 64 (1994) 1159.CrossRefGoogle Scholar
  19. 19.
    D. GALLAGHER, W. E. HEADY, J. M. RACZ and R. N. BHARGAVA,J. Crystal Growth 138 (1994) 970.CrossRefGoogle Scholar
  20. 20.
    S. GUHA, G. HENDERSHOT, D. PEEBLES, P. STEINER, F. KOZLOWSKI, W. LANG,Appl. Phys. Lett. 64 (1994) 613.CrossRefGoogle Scholar
  21. 21.
    H. S. NALWA, H. KASAI, S. OKADA, H. OIKAWA, H. MATSUDA, A. KAKUTA, A. MUKOH and H. NAKANISHI,Adv. Mater. 5 (1993) 758.CrossRefGoogle Scholar
  22. 22.
    F. J. BALTÀ CALLEJA and C. G. VONK, “X-Ray Scattering of Synthetic Polymers” (Elsevier, Amsterdam 1989) p. 18.Google Scholar
  23. 23.
    C. G. VONK and G. KORTLEVE,Coll. Polym. Sci. 220 (1967) 19.Google Scholar
  24. 24.
    W. RULAND,ibid. 255 (1977) 417.CrossRefGoogle Scholar
  25. 25.
    D. J. BLUNDELL and D. N. OSBORN,Polymer 24 (1983) 953.CrossRefGoogle Scholar
  26. 26.
    R. GEHRKE and H. G. ZACHMANN,Makromol. Chem. 182 (1981) 627.CrossRefGoogle Scholar
  27. 27.
    S. POLIZZI, N. STRIBECK, H. G. ZACHMANN and R. BORDEIANU,Coll. Polym. Sci. 267 (1989) 281.CrossRefGoogle Scholar
  28. 28.
    N. STRIBECK,ibid. 271 (1993) 1007.CrossRefGoogle Scholar
  29. 29.
    N. STRIBECK, R. G. ALAMO, L. MANDELKERN and H. G. ZACHMANN,Macromolecules 28 (1995) 5029.CrossRefGoogle Scholar
  30. 30.
    F. ZERNIKE and J. A. PRINS,Z. Phys. 41 (1927) 184.CrossRefGoogle Scholar
  31. 31.
    R. HOSEMANN,ibid. 128 (1950) 1.CrossRefGoogle Scholar
  32. 32.
    Idem,ibid. 128 (1950) 465.Google Scholar
  33. 33.
    D. J. BLUNDELL,Polymer 19 (1978) 1258.CrossRefGoogle Scholar
  34. 34.
    J. RATHJE and W. RULAND,Coll. Polym. Sci. 254 (1976) 358.CrossRefGoogle Scholar
  35. 35.
    F. J. BALTÀ CALLEJA,Adv. Polym. Sci. 66 (1985) 117.CrossRefGoogle Scholar
  36. 36.
    Idem,Trends Polym. Sci. 2(12) (1994) 419.Google Scholar
  37. 37.
    A. H. CHOKSHI, A. ROSEN, J. KARCH and H. GLEITER,Scripta Metall. 23 (1989) 1679.CrossRefGoogle Scholar
  38. 38.
    W. RULAND,J. Appl. Crystallogr. 4 (1971) 70.CrossRefGoogle Scholar
  39. 39.
    Idem,Macromolecules 20 (1987) 87.CrossRefGoogle Scholar
  40. 40.
    A. N. SEMENOV,ibid. 27 (1994) 2732.CrossRefGoogle Scholar
  41. 41.
    L. A. FEIGIN and D. I. SVERGUN “Structure Analysis by Small-Angle X-Ray and Neutron Scattering” (Plenum Press, New York, 1987) p. 53.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
  • R. K BAYER
    • 2
    • 3
  1. 1.Institut fur Technologisch und Makromolekular ChemieUniversitat HamburgHamburgGermany
  2. 2.Institut fur WerkstofftechnikUniversitat GH KasselKasselGermany
  3. 3.Instituto de Estructura de la MateriaCSICMadridSpain

Personalised recommendations