Advertisement

Journal of Applied Electrochemistry

, Volume 27, Issue 6, pp 713–719 | Cite as

Effect of zinc on the electrocrystallization of cobalt

  • N. PRADHAN
  • T. SUBBAIAH
  • S. C. DAS
  • U. N. DASH
Article

Abstract

The effects of zinc on the current efficiency, power consumption, deposit quality and contamination of cathode deposit during electrocrystallization of cobalt were studied. The presence of zinc affected current efficiency at all temperatures and the effect was intensified at lower temperature. Increase in power consumption was significant at lower temperature. The quantity of zinc in the electrodeposited cobalt invariably increased with increase in zinc concentration in the electrolyte, however, the zinc content of the deposit was significantly low at higher temperature. The tolerance limit of zinc in the electrolyte with respect to deposit quality was also greater at higher temperature. Increase in current density decreased the current efficiency, increased the power consumption and lowered the cathode contamination.

Keywords

Zinc Physical Chemistry Cobalt Power Consumption Zinc Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Bouchat and J. J. Sauet, J. Metals 12 (1960)802.Google Scholar
  2. [2]
    G. S. Armstrong and D. S. Macleod, Trans. Inst. Min. Metall. Sec. C 79 (1970) 41.Google Scholar
  3. [3]
    R. M. Whyte, J. R. Orjans, G. B. Harris and J. A. Thomas, in `Advances in Extractive Metallurgy' (edited by M. J. Jones), Inst. Min. Metall (1977), p 57.Google Scholar
  4. [4]
    C. L. Mantell, `Electrochemical Engineering', McGraw-Hill, New York (1960), pp. 234–5.Google Scholar
  5. [5]
    G. E. Derek and D. R. Weir, `Hydro and Electrometallurgy of Nickel and Cobalt', paper presented at 117th ATMF-TMS Annual Meeting, Phoenix, AZ (1988).Google Scholar
  6. [6]
    L. I. Antropov, Inst. Khim i. Khim Teknol, Vilnyus (1956) 237.Google Scholar
  7. [7]
    J. O. M. Bockris and M. Enyo, Trans. Faraday Soc. 58 (1962) 1187.Google Scholar
  8. [8]
    V. L. Kheifets and A. L. Rotinyan, Trudy Chetevestoyo Soveschchaniya PO Elektrokhimi, Moscow 1956 (1959) 440.Google Scholar
  9. [9]
    P. Louis, B. Kalala and T. Shungu, `Extractive Metallurgy of Ni and Co' (edited by G. P. Tyroler and C. A. Lan-dolt) The Metallurgical Society Inc., (1988), p. 531.Google Scholar
  10. [10]
    K. Osseo-Assare and J. D. Miller (eds)., `Hydrometallurgy Research Development and Plant Practice', Met. Soc. AIME (1982), p. 139 and p. 463.Google Scholar
  11. [11]
    R. E. Churchward, F. K. Whelton and R. G. A. Ku-ickerboecher, Trans. Electrochem. Soc. 85 (1944) 193.Google Scholar
  12. [12]
    T. Shungu and Ph. Charles, First International Confer-ence on Cobalt Metallurgy and Use, Belgium (1981), p. 73.Google Scholar
  13. [13]
    T. Nzengu and Wa. Nzengu, Dissertation Université de Lumbumbashi, Zaire (1983).Google Scholar
  14. [14]
    J. Nokin, Rev. Universille Mines 13 (1957) 220.Google Scholar
  15. [15]
    H. Fukushima, T. Akiyama, M. Yano, T. Ishikawa and R. Kammel, ISIJpn International 33 (1993) 1009.Google Scholar
  16. [16]
    A. Ganeidy, W. A. Koechler and W. Machu, J. Electrochem. Soc. 106 (1959) 394.Google Scholar
  17. [17]
    J. K. Dennis and J. J. Fuggles, Trans. Inst. Met. Finish 46 (1968) 185.Google Scholar
  18. [18]
    F. A. Lowenheim (ed.), `Modern Electroplating', Wiley Interscience, New York (1974), p. 39 and p. 325.Google Scholar
  19. [19]
    S. K. Gogia and S. C. Das, Met. Trans. 19B (1988) 6.Google Scholar
  20. [20]
    A. Knoedler, Metalloberfläche 21 (1967) 321.Google Scholar
  21. [21]
    H. Fukushima, T. Akiya, K. Higashi, R. Kammel and M. Karimkhani, Metall 42 (1988) 242.Google Scholar
  22. [22]
    A. Shibuya and T. Kurimoto, J. Met. Finish Soc., Japan 33 (1983) 544.Google Scholar
  23. [23]
    M. J. Nicol and H. I. Phillip, J. Electroanal. Chem. Interfacial Electrochem. 70 (1970) 233.Google Scholar
  24. [24]
    A. Akiyama and H. Fukushima, ISIJpn International 32 (1992) 787.Google Scholar
  25. [25]
    A. B. Brenner, `Electrodeposition of Alloys', vols 1 and 2, Academic Press, New York (1963).Google Scholar
  26. [26]
    K. Higashi and F. Fukushima, J. Jpn Inst. Metals 13 (1974) 865.Google Scholar
  27. [27]
    H. Dahm and I. M. Croll, J. Electrochem. Soc. 112 (1965) 771.Google Scholar
  28. [28]
    Z. Kovac, ibid. 118 (1971) 51.Google Scholar
  29. [29]
    E. Raub, Plat. Surf. Finish. 63 (1976) 29.Google Scholar
  30. [30]
    K. Higashi, H. Fukushima, T. Urakawa, T. Adaniya and K. Matsudo, J. Electrochem. Soc. 128 (1981) 2081.Google Scholar
  31. [31]
    H. Fukushima, T. Akiyama, J. H. Lee, M. Yamaguchi and K. Higashi, J. Met. Finish Soc. Jpn 33 (1982) 574.Google Scholar
  32. [32]
    T. Tsuru, S. Tashiro, T. Tanaka and K. Hosokawa, ibid. 42 (1991) 105.Google Scholar
  33. [33]
    E. Raub, A. Knoedler, A. Disan and H. Kawase, Metalloberflache 23 (1969) 293.Google Scholar
  34. [34]
    K. Knoedler, Surf. Technol 4 (1976) 441.Google Scholar
  35. [35]
    D. Landolt, Electrochim. Acta 39 (1994) 1075.Google Scholar
  36. [36]
    K. E. Heusler, Ber. Bunsenges 71 (1967) 620.Google Scholar
  37. [37]
    W. C. Cooper, Plat. Surf. Finish. 77 (1990) 68.Google Scholar
  38. [38]
    J. Matulis and R. Slizys, Electrochim. Acta 9 (1964) 1177.Google Scholar
  39. [39]
    J. Scoyer and R. Winand, Proceedings of a Symposium on Chloride Hydrometallurgy, Brussels, 26-28 Sept. (1977), p. 294.Google Scholar
  40. [40]
    S. C. Das and T. Subbaiah, Hydrometallurgy 12 (1984) 317.Google Scholar
  41. [41]
    Idem, J. Appl. Electrochem. 17 (1987) 675.Google Scholar
  42. [42]
    D. Loewe, L. Muller and H. Ufer, Neue Hutte 13 (1968) 281.Google Scholar
  43. [43]
    C. Feneau and R. Breckpot, Metallurgie (Mons. Belg.) 9 (1969) 115.Google Scholar
  44. [44]
    E. Kuzeci, R. Kammel and S. K. Gogia, J. Appl. Electrochem. 24 (1994) 730.Google Scholar
  45. [45]
    C. Q. Cul, S. P. Jiang and A. C. Tseung, J. Electrochem. Soc. 13 (1990) 3418.Google Scholar
  46. [46]
    D. E. Hall, Plat. Surf. Finish. 70 (1983) 59.Google Scholar
  47. [47]
    H. Fisher, Electrochim. Acta 2 (1960) 50.Google Scholar
  48. [48]
    M. Dubrovsky and J. W. Evan, Met. Trans. 13B (1982) 293.Google Scholar
  49. [49]
    S. Nakahara and S. Mahajan, J. Electrochem. Soc. 127 (1980) 283.Google Scholar
  50. [50]
    H. Fukushima, T. Akiyama, T. Suda and K. Higashi, Met. Rev. Mining Met. Inst. Jpn 3 (1986) 34.Google Scholar
  51. [51]
    L. Felloni, R. Fratesi, E. Quadrini and G. Roventi, J. Appl. Electrochem. 17 (1987) 574.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • N. PRADHAN
    • 1
  • T. SUBBAIAH
    • 1
  • S. C. DAS
    • 1
  • U. N. DASH
    • 2
  1. 1.Hydro & Electrometallurgy DivisionRegional Research LaboratoryBhubaneswarIndia
  2. 2.Department of ChemistryUtkal UniversityVani vihar, BhubaneswarIndia

Personalised recommendations