Experimental & Applied Acarology

, Volume 21, Issue 12, pp 755–771 | Cite as

Infestation of mammals by Ixodes ricinus ticks (Acari: Ixodidae) in south-central Sweden

  • Lars Talleklint
  • Thomas G.T. Jaenson
Article

Abstract

Infestation by Ixodes ricinus ticks on rodents, hares and cervids was examined at Bogesund, 10 km north of Stockholm, in south-central Sweden during 1991-1994 and on varying hares (Lepus timidus) at Stora Karlso and Gotska Sandon in the Baltic Sea during 1992-1993. At Bogesund, there were great differences between two consecutive years in the number of I. ricinus larvae infesting bank voles (Clethrionomys glareolus). The seasonal pattern of infestation by I. ricinus larvae and nymphs on bank voles was unimodal in 1991, with peaks in June-July and bimodal in 1992, with peaks in June and August. Male bank voles, compared to females and older voles, compared to young voles, harboured greater numbers of I. ricinus ticks. Apodemus mice, compared to bank voles, harboured greater numbers of I. ricinus ticks. Ixodes ricinus larvae engorged on Apodemus mice were heavier than larvae engorged on bank voles and resulted in larger nymphs. However, there was no difference in the proportions of viable nymphs resulting from larvae engorged on mice or voles. The ranges in the numbers of I. ricinus ticks infesting individual hosts were 1-451 for rodents, 16-2374 for hares and 428-2072 for roe deer (Capreolus capreolus). These ranges of tick numbers are estimated to represent potential blood losses from individual hosts of approximately 0.2-65% for rodents, 0.2-13% for hares and 0.3-9.0% for roe deer. Within the populations of all host species examined, the distributions of all stages of I. ricinus were clumped, with most host individuals harbouring few ticks and only a few individuals harbouring many ticks. The data suggest that, even though a small proportion of tick hosts may be severely affected, the direct effects of feeding by I. ricinus are unlikely to play an important role on mammal population dynamics.

Ixodes ricinus mammals population dynamics infestation patterns Sweden 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Balashov, Yu.S. 1972. [Bloodsucking ticks (Ixodoidea) — vectors of diseases of man and animals]. Misc. Publ. Entomol. Soc. Am. 8: 163–176 (English translation).Google Scholar
  2. Bauwens, D., Strijbosch, H. and Stumpel, A.H.P. 1983. The lizards Lacerta agilis and L. vivipara as hosts to larvae and nymphs of the tick Ixodes ricinus. Holarctic Ecol. 6: 32–40.Google Scholar
  3. Bolte, J.R., Hair, J.A. and Fletcher, J. 1970. White-tailed deer mortality following tissue destruction induced by lone star ticks. J. Wildl. Manage., 34: 546–552.Google Scholar
  4. Bondrup-Nielsen, S. and Karlsson, F. 1985. Movements and spatial patterns in populations of Clethrionomys species: a review. Ann. Zool. Fenn. 22: 385–392.Google Scholar
  5. Brinck, P., Johnels, A., Lundholm, B., von Zeipel, G. and Zetterberg, B. 1967. Small mammals as hosts of tick-borne encephalitis virus and vagrant ectoparasites. Oikos 18: 124–134.Google Scholar
  6. Brinck, P., Brinck-Lindroth, G., Edler, A., Lundqvist, L. and Nilsson, A. 1984. Ectoparasites (Insecta: Anoplura and Siphonaptera. Acari: Mesostigmata, Ixodoidea) on small mammals in Draved forest, Denmark. Entomol. Medd. 51: 103–11.Google Scholar
  7. Brunet, L.R., Sellitto, C., Spielman, A. and Telford, S.R., III 1995. Antibody response of the mouse reservoir of Borrelia burgdorferi in nature. Infect. Immunol. 63: 3030–3036.Google Scholar
  8. Bull, C.M. and Burzacott, D. 1993. The impact of tick load on the fitness of their lizard hosts. Oecologia 96: 415–419.Google Scholar
  9. Craine, N.G., Randolph, S.E. and Nuttall, P.A. 1995. Seasonal variation in the role of grey squirrels as hosts of Ixodes ricinus, the tick vector of the Lyme disease spirochete, in a British woodland. Folia Parasitol. 42: 73–80.Google Scholar
  10. de Boer, R., Hovius, K.E., Nohlmans, M.K.E. and Gray, J.S. 1993. The woodmouse (Apodemus sylvaticus) as a reservoir of tick-transmitted spirochetes (Borrelia burgdorferi) in The Netherlands. Zentralbl. Bakteriol. Mikrobiol. Hyg. Ser. A279: 404–416.Google Scholar
  11. Dizij, A. and Kurtenbach, K. 1995. Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi. Parasite Immunol. 17: 177–183.Google Scholar
  12. Doby, J.M., Bigaignon, G. and Degeilh, B. 1992. Importance potentielle comparée du mulot gris (Apodemus sylvaticus) et du campagnol roussâtre (Clethrionomys glareolus) dans l'ouest de la France, au travers de la relation rongeuers — Ixodes ricinus. Bull. Soc. Franç. Parasitol. 10: 271–293.Google Scholar
  13. Erlinge, S., Hoogenboom, I., Agrell, J., Nelson, J. and Sandell, M. 1990. Density-related home-range size and overlap in adult field voles (Microtus agrestis) in southern Sweden. J. Mammal. 71: 597–603.Google Scholar
  14. Gemmell, R.T., Cepon, G., Green, P.E. and Stewart, N.P. 1991. Some effects of tick infestation on juvenile northern brown bandicoot (Isodon macrourus). J. Wildl. Dis. 27: 269–275.Google Scholar
  15. Gigon, F. 1985. Biologie d'Ixodes ricinus L. sur le Plateau Suisse — une contribution à l' écologie de ce vecteur. Thèse présentée à la Faculté des Sciences de l'Université de Neuchâtel.Google Scholar
  16. Gray, J.S. 1984. Studies on the dynamics of active populations of the sheep tick, Ixodes ricinus L., in Co. Wicklow, Ireland. Acarologia 25: 167–178.Google Scholar
  17. Gray, J.S., Turley, T. and Strickland, K.L. 1978. Studies on the ecology of sheep tick, Ixodes ricinus, in Co. Wicklow, Ireland. Irish Vet. J. February: 25–34.Google Scholar
  18. Gray, J.S., Kahl, O., Janetzki, C. and Stein, J. 1992. Studies on the ecology of Lyme disease in a deer forest in County Galway, Ireland. J. Med. Entomol. 29: 915–920.Google Scholar
  19. Gray, J.S., Kahl, O., Janetzki, C., Stein, J. and Guy, E. 1995. The spatial distribution of Borrelia burgdorferi-infected Ixodes ricinus in the Connemara region of County Galway, Ireland. Exp. Appl. Acarol. 19: 163–172.Google Scholar
  20. Hair, J.A., Hoch, A.L., Buckner, R.G. and Baker, R.W. 1992. Fawn hematology and survival following tick infestation and theileriasis. J. Agricult. Entomol. 9: 301–319.Google Scholar
  21. Humair, P.F., Turrian, N., Aeschlimann, A. and Gern, L. 1993. Borrelia burgdorferi in a focus of Lyme borreliosis: epizootiologic contribution of small mammals. Folia Parasitol. 40: 65–70.Google Scholar
  22. Jaenson, T.G.T. and Tälleklint, L. 1996. Lyme borreliosis spirochetes in Ixodes ricinus (Acari: Ixodidae) and the varying hare on isolated islands in the Baltic Sea. J. Med. Entomol. 33: 339–343.Google Scholar
  23. Jaenson, T.G.T., Tälleklint, L., Lundqvist, L., Olsen, B., Chirico, J. and Mejlon, H.A. 1994. Geographical distribution, host associations and vector roles of ticks (Acari: Ixodidae, Argasidae) in Sweden. J. Med. Entomol. 31: 240–256.Google Scholar
  24. Kaufman, W.R. 1989. Tick-Host interaction: a synthesis of current concepts. Parasitol. Today 5: 47–56.Google Scholar
  25. Keith, L.B. and Cary, J.R. 1990. Interaction of the tick (Haemaphysalis leporispalustris) with a cyclic snowshoe hare (Lepus americanus) population. J. Wildl. Dis. 26: 427–434.Google Scholar
  26. Kitron, U., Jones, C.J. and Bouseman, J.K. 1991. Spatial and temporal dispersion of immature Ixodes dammini on Peromyscus leucopus in northwestern Illinois. J. Parasitol. 77: 945–949.Google Scholar
  27. Kurtenbach, K., Kampen, H., Dizij, A., Arndt, S., Seitz, H.M., Schaible, U.E. and Simon, M.M. 1995. Infestation of rodents with larval Ixodes ricinus (Acari: Ixodidae) is an important factor in the transmission cycle of Borrelia burgdorferi s.l. in German woodlands. J. Med. Entomol. 32: 807–817.Google Scholar
  28. Lebedeva, N.N. 1981. Differences between various species of Muridae in the feeding of larvae of ixodid ticks (Ixodidae). Parasitologia 15: 436–440.Google Scholar
  29. Lehmann, T. 1993. Ectoparasites: direct impact on host fitness. Parasitol. Today 9: 8–13.Google Scholar
  30. MacDonald, D. and Barret, P. 1993. Mammals of Britain and Europe. HarperCollins Publishers, LondonGoogle Scholar
  31. Manelli, A., Kitron, U., Jones, C.J. and Slajchert, T.L. 1993. Role of the eastern chipmunk as a host for immature Ixodes dammini (Acari: Ixodidae) in northwestern Illinois. J. Med. Entomol. 30: 87–93.Google Scholar
  32. Matuschka, F.R., Lange, R., Spielman, A., Richter, D. and Fischer, P. 1990. Subadult Ixodes ricinus (Acari: Ixodidae) on rodents in Berlin, West Germany. J. Med. Entomol. 27: 385–390.Google Scholar
  33. Matuschka, F.R., Fischer, P., Musgrave, K., Richter, D. and Spielman, A. 1991. Hosts on which nymphal Ixodes ricinus most abundantly feed. Am. J. Trop. Med. Hygiene 4: 100–107.Google Scholar
  34. Matuschka, F.R., Fischer, P., Heiler, M., Richter, D. and Spielman, A. 1992. Capacity of European animals as reservoir hosts for the Lyme disease spirochete. J. Infect. Dis. 165: 479–483.Google Scholar
  35. Matuschka, F.R., Eiffert, H., Ohlenbusch, A. and Spielman, A. 1994. Amplifying role of edible dormice in Lyme disease transmission in central Europe. J. Infect. Dis. 170: 122–127.Google Scholar
  36. Mermod, C., Aeschlimann, A. and Graf, J.-F. 1973. ‘Écologie et éthologie d’Ixodes ricinus Linné 1758 en Suisse (Acarina, Ixodoidea). Première note: fluctuations numériques. Acarologia 15: 197–205.Google Scholar
  37. Mermod, C., Aeschlimann, A. and Graf, J.-F. 1974. Écologie et éthologie d'Ixodes ricinus L, en Suisse. Deuxième note: comparison des populations 1972 et 1973. Acarologia 16: 612–620.Google Scholar
  38. Myllamäki. A. 1977. Intraspecific competition and home range dynamics in the field vole Microtus agrestis. Oikos 29: 553–569.Google Scholar
  39. Nelson, W.A., Keirans, J.E., Bell, J.F. and Clifford, C.M. 1975. Host-Ectoparasite relationships. J. Med. Entomol. 12: 143–166.Google Scholar
  40. Nelson, W.A., Keirans, J.E., Bell, J.F. and Clifford, C.M. 1977. Interactions of ectoparasites and their hosts. J. Med. Entomol. 13: 389–428.Google Scholar
  41. Nilsson, A. 1988. Seasonal occurrence of Ixodes ricinus (Acari) in vegetation and on small mammals in southern Sweden. Holarctic Ecol. 11: 161–165.Google Scholar
  42. Nilsson, A. and Lundqvist, L. 1978. Host selection and movements of Ixodes ricinus (Acari) on small mammals. Oikos 31: 313–322.Google Scholar
  43. Pruszynska, I. 1983. Faunistic-ecological studies on the ectoparasites of the small mammals caught in the natural focus of tick-borne encephalitis in the region of Gdansk. Bull. Inst. Mar. Trop. Med. Gdynia 39: 91–107.Google Scholar
  44. Randolph, S.E. 1977. Changing spatial relationships in a population of Apodemus sylvaticus with the onset of breeding. J. Animal Ecol. 46: 653–676.Google Scholar
  45. Randolph, S.E. 1979. Population regulation in ticks: the role of acquired resistance in natural and unnatural hosts. Parasitology 79: 141–156.Google Scholar
  46. Randolph, S.E. 1994. Density-dependent acquired resistance to ticks in natural hosts, independent of concurrent infection with Babesia microti. Parasitology 108: 413–419.Google Scholar
  47. Randolph, S.E. and Steele, G.M. 1985. An experimental evaluation of conventional control measures against the sheep tick, Ixodes ricinus (L.) (Acari: Ixodidae). II. The dynamics of the tick-host interaction. Bull. Entomol. Res. 75: 501–518.Google Scholar
  48. Rechav, Y. 1992. Naturally acquired resistance to ticks — a global view. Insect Sci. Appl. 13: 495–504.Google Scholar
  49. Schmidt-Nielsen, K. 1975. Animal Physiology. Cambridge University Press, Cambridge.Google Scholar
  50. Sokal, R.R. and Rohlf, F.J. 1981. Biometry. W. H. Freeman and Company, New York.Google Scholar
  51. Sonenshine, D.E. 1993. Biology of Ticks, Vol. 2. Oxford University Press, Oxford.Google Scholar
  52. Sonenshine, D.E. and Stout, J. 1968. Tick burdens in relation to spacing and range of hosts in Dermacentor variabilis. J. Med. Entomol. 5: 49–52.Google Scholar
  53. Steele, G.M. and Randolph, S.E. 1985. An experimental evaluation of conventional control measures against the sheep tick, Ixodes ricinus (L.) (Acari: Ixodidae). I. A unimodal seasonal activity pattern. Bull. Entomol. Res. 75: 489–499.Google Scholar
  54. Tälleklint, L. and Jaenson, T.G.T. 1994. Transmission of Borrelia burgdorferi. s. l. from mammal reservoirs to the primary vector of Lyme borreliosis, Ixodes ricinus (Acari: Ixodidae), in Sweden. J. Med. Entomol. 31: 880–886.Google Scholar
  55. Tälleklint, L. and Jaenson, T.G.T. 1996. Seasonal variations in density of questing Ixodes ricinus (Acari: Ixodidae) nymphs and prevalence of infection with B. burgdorferi s.l. in south-central Sweden. J. Med. Entomol. 33: 592–597.Google Scholar
  56. Viitala, J. and Hoffmeyer, I. 1985. Social organization in Clethrionomys compared with Microtus and Apodemus: social odours, chemistry and biological effects. Ann. Zool. Fenn. 22: 359–371.Google Scholar
  57. Wikel, S.K. 1996. Host immunity to ticks. Ann. Rev. Entomol. 41: 1–22.Google Scholar
  58. Ylönen, H. and Viitala, J. 1991. Social overwintering and food distribution in the bank vole Clethrionomys glareolus. Holarctic Ecol. 14: 131–137.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Lars Talleklint
    • 1
    • 2
  • Thomas G.T. Jaenson
    • 1
    • 2
  1. 1.Medical Entomology Unit, Department of EntomologySwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Department of ZoologyUppsala UniversityUppsalaSweden

Personalised recommendations