Cancer Causes & Control

, Volume 8, Issue 3, pp 271–283

Sunlight and cancer

  • Dallas R. English
  • Bruce K. Armstrong
  • Anne Kricker
  • Claire Fleming
Article

Abstract

Epidemiologic evidence on the relation between sunlight and cancer is reviewed. Strong evidence implicates sunlight as a cause of skin cancer, although, for melanoma and basal cell carcinoma, the relationship is complex. Both types of cancer are associated more strongly with nonoccupational exposure than with occupational exposure, and the pattern and amount of exposure each appear to be important. Squamous cell carcinoma appears to be related more strongly to total (i.e., both occupational and nonoccupational) exposure to the sun. The evidence that sunlight causes melanoma of the eye is weak. It shows no latitude gradient and the results of case-control studies are conflicting. There is inadequate evidence to suggest that sunlight does or does not cause any other type of cancer.

Melanoma skin neoplasms sunlight 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Gruijl FR. Photobiology of photocarcinogenesis. Photochem Photobiol 1996; 63: 372–5.Google Scholar
  2. 2.
    Parkin DM, Muir CS, Whelan SL, Gao YT, Ferlay J, Powell J, eds. Cancer Incidence in Five Continents. Lyon, France: International Agency for Research on Cancer, 1992; IARC Sci. Pub. No. 120.Google Scholar
  3. 3.
    Armstrong BK. Melanoma of the skin. Br Med Bull 1984; 40: 346–50.Google Scholar
  4. 4.
    Bulliard JL, Cox B, Elwood JM. Latitude gradients in melanoma incidence and mortality in the non-Maori population of New Zealand. Cancer Causes Control 1994; 5: 234–40.Google Scholar
  5. 5.
    Khlat M, Vail A, Parkin DM, Green A. Mortality from melanoma in migrants to Australia: variation by age at arrival and duration of stay. Am J Epidemiol 1992; 135: 1103–13.Google Scholar
  6. 6.
    Iscovich J, Andreev H, Steinitz R. Incidence of cutaneous malignant melanoma in Israel, 1960–1989. Public Health Rev 1995; 23: 1-23.Google Scholar
  7. 7.
    Mack TM, Floderus B. Malignant melanoma risk by nativ-ity, place of residence at diagnosis, and age at migration. Cancer Causes Control 1991; 2: 401–11.Google Scholar
  8. 8.
    Holman CD, Mulroney CD, Armstrong BK. Epidemiology of pre-invasive and invasive malignant melanoma in Western Australia. Int J Cancer 1980; 25: 317–23.Google Scholar
  9. 9.
    Lee JA, Strickland D. Malignant melanoma: social status and outdoor work. Br J Cancer 1980; 41: 757–63.Google Scholar
  10. 10.
    Cooke KR, Skegg DC, Fraser J. Socio-economic status, indoor and outdoor work, and malignant melanoma. Int J Cancer 1984; 34: 57–62.Google Scholar
  11. 11.
    Green A, Maclennan R, Youl P, Martin N. Site distribution of cutaneous melanoma in Queensland. Int J Cancer 1993; 53: 232–6.Google Scholar
  12. 12.
    Armstrong BK, English DR. Cutaneous malignant melaoma. In: Schottenfeld D, Fraumeni JF Jr, eds. Cancer Epidemiology and Prevention. Second Edition. New York, NY (USA): Oxford University Press, 1996.Google Scholar
  13. 13.
    White E, Kirkpatrick CS, Lee JA. Case-control study of malignant melanoma in Washington State. I. Constitutional factors and sun exposure. AmJ Epidemiol 1994; 139: 857–68.Google Scholar
  14. 14.
    Holly EA, Aston DA, Cress RD, Ahn DK, Kristiansen JJ. Cutaneous melanoma in women. I. Exposure to sunlight, ability to tan, and other risk factors related to ultraviolet light. Am J Epidemiol 1995; 141: 923–33.Google Scholar
  15. 15.
    International Agency for Research on Cancer. Solar and Ultraviolet Radiation. Lyon, France: IARC, 1992: IARC Monogr Eval Carcinog Risks Humans: 1–316.Google Scholar
  16. 16.
    Pion IA, Rigel DS, Garfinkel L, Silverman MK, Kopf AW. Occupation and the risk of malignant melanoma. Cancer 1995; 75: 637–44.Google Scholar
  17. 17.
    Autier P, Dore JF, Lejeune F,et al. Recreational exposure to sunlight and lack of information as risk factors for cutaneous malignant melanoma. Results of an European Organization for Research and Treatment of Cancer (EORTC) case-control study in Belgium, France and Germany. The EORTC Malignant Melanoma Cooperative Group. Melanoma Res 1994; 4: 79–85.Google Scholar
  18. 18.
    Autier P, Dore JF, Schifflers E,et al. Melanoma and use of sunscreens: an EORTC case-control study in Germany, Belgium and France. The EORTC Melanoma Cooperative Group. Int J Cancer 1995; 61: 749–55.Google Scholar
  19. 19.
    Westerdahl J, Olsson H, Ingvar C, Brandt L, Jonsson PE, Moller T. Southern travelling habits with special reference to tumour site in Swedish melanoma patients. Anticancer Res 1992; 12: 1539–42.Google Scholar
  20. 20.
    Westerdahl J, Olsson H, Ingvar C. At what age do sunburn episodes play a crucial role for the development of malignant melanoma? Eur J Cancer 1994; 30A: 1647–54.Google Scholar
  21. 21.
    Marghoob AA, Slade J, Salopek TG, Kopf AW, Bart RS, Rigel DS. Basal cell and squamous cell carcinomas are important risk factors for cutaneous malignant melanoma. Screening implications. Cancer 1995; 75: 707–14.Google Scholar
  22. 22.
    Goodman KJ, Bible ML, London S, Mack TM. Proportional melanoma incidence and occupation among White males in Los Angeles County (California, United States). Cancer Causes Control 1995; 6: 451–9.Google Scholar
  23. 23.
    Rodenas JM, Delgado-Rodriguez M, Herranz MT, Tercedor J, Serrano S. Sun exposure, pigmentary traits, and risk of cutaneous malignant melanoma-a case-control study in a Mediterranean population. Cancer Causes Control 1996; 7: 275–83.Google Scholar
  24. 24.
    Brown J, Kopf AW, Rigel DS, Friedman RJ. Malignant melanoma in World War II veterans. Int J Dermatol 1984; 23: 661–3.Google Scholar
  25. 25.
    Lê MG, Cabanes PA, Desvignes V, Chanteau MF, Mlika N, Avril MF. Oral contraceptive use and risk of cutaneous malignant melanoma in a case-control study of French women. Cancer Causes Control 1992; 3: 199–205.Google Scholar
  26. 26.
    Grob JJ, Gouvernet J, Aymar D,et al. Count of benign melanocytic nevi as a major indicator of risk for nonfamilial nodular and superficial spreading melanoma. Cancer 1990; 66: 387–95.Google Scholar
  27. 27.
    Vågerö D, Ringbäck G, Kiviranta H. Melanoma and other tumours of the skin among office, other indoor and outdoor workers in Sweden 1961–1979. Br J Cancer 1986; 53: 507-12.Google Scholar
  28. 28.
    Beral V, Robinson N. The relationship of malignant melanoma, basal and squamous skin cancers to indoor and outdoor work. Br J Cancer 1981; 44: 886–91.Google Scholar
  29. 29.
    Nelemans PJ, Rampen FH, Ruiter DJ, Verbeek AL. An addition to the controversy on sunlight exposure and melanoma risk: a meta-analytical approach. J Clin Epidemiol 1995; 48: 1331–42.Google Scholar
  30. 30.
    World Health Organization. Ultraviolet Radiation (Environmental Health Criteria 160). Geneva, Switzerland: WHO, 1994.Google Scholar
  31. 31.
    Elwood JM, Gallagher RP, Hill GB, Pearson JC. Cutaneous melanoma in relation to intermittent and constant sun exposure-the Western Canada Melanoma Study. Int J Cancer 1985; 35: 427–33.Google Scholar
  32. 32.
    Elwood JM, Gallagher RP. Sun exposure and the epidemiology of melanoma. In: Gallagher RP, Elwood ME, eds. Epidemiological Aspects of Cutaneous Malignant Melanoma. Boston, MA (USA): Kluwer Academic Publishers, 1994: 15–66.Google Scholar
  33. 33.
    Westerdahl J, Olsson H, Masback A, Ingvar C, Jonsson N. Is the use of sunscreens a risk factor for malignant melanoma? Melanoma Res 1995; 5: 59–65.Google Scholar
  34. 34.
    Kricker A, Armstrong BK, English DR. Sun exposure and non-melanocytic skin cancer. Cancer Causes Control 1994; 5: 367–92.Google Scholar
  35. 35.
    Scotto J, Fears TR, Fraumeni JF Jr. Incidence of Non-melanoma Skin Cancer in the United States. Bethesda, MD (USA): US Department of Health and Human Services, 1983; NIH Pub. No. 82–2433.Google Scholar
  36. 36.
    Kricker A, Armstrong BK, English DR, Heenan PJ. Pig-mentary and cutaneous risk factors for non-melanocytic skin cancer-a case-control study. Int J Cancer 1991; 48: 650–62.Google Scholar
  37. 37.
    Marks R, Staples M, Giles GG. Trends in non-melanocytic skin cancer treated in Australia: the second national survey. Int J Cancer 1993; 53: 585–90.Google Scholar
  38. 38.
    Molesworth EH. Rodent ulcer. Med J Aust 1927; 1: 878–99.Google Scholar
  39. 39.
    Blum H. Sunlight as a causal factor in cancer of the skin in man. JNCI 1948; 9: 247–58.Google Scholar
  40. 40.
    Emmett EA. Ultraviolet radiation as a cause of skin tumors. CRC Critical Reviews in Toxicology 1973; 2: 211–55.Google Scholar
  41. 41.
    Marks R, Jolley D, Dorevitch AP, Selwood TS. The inci-dence of non-melanocytic skin cancers in an Australian population: results of a five-year prospective study. Med J Aust 1989; 150: 475–8.Google Scholar
  42. 42.
    Vitasa BC, Taylor HR, Strickland PT,et al. Association of nonmelanoma skin cancer and actinic keratosis with cumulative solar ultraviolet exposure in Maryland water-men. Cancer 1990; 65: 2811–7.Google Scholar
  43. 43.
    Hunter DJ, Colditz GA, Stampfer MJ, Rosner B, Willett WC, Speizer FE. Risk factors for basal cell carcinoma in a prospective cohort of women. Ann Epidemiol 1990; 1: 13–23.Google Scholar
  44. 44.
    Gallagher RP, Hill GB, Bajdik CD,et al. Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer. I. Basal cell carcinoma. Arch Dermatol 1995; 131: 157–63.Google Scholar
  45. 45.
    Kricker A, Armstrong BK, English DR, Heenan PJ. A dose-response curve for sun exposure and basal cell carci-noma. Int J Cancer 1995; 60: 482–8.Google Scholar
  46. 46.
    Rosso S, Zanetti R, Martinez C,et al. The multicentre South European Study, 'Helios.' 2. Different sun exposure patterns in the aetiology of basal cell and squamous cell carcinomas of the skin. Br J Cancer 1996; 73: 1447–54.Google Scholar
  47. 47.
    Zanetti R, Rosso S, Martinez C,et al. The multicentre South European Study, 'Helios.' 1. Skin characteristics and sunburns in basal cell and squamous cell carcinomas of the skin. Br J Cancer 1996; 73: 1440–6.Google Scholar
  48. 48.
    Kricker A, Armstrong BK, English DR, Heenan PJ. Does intermittent sun exposure cause basal cell carcinoma? A case-control study in Western Australia. Int J Cancer 1995; 60: 489–94.Google Scholar
  49. 49.
    Hogan DJ, To T, Gran L, Wong D, Lane PR. Risk factors for basal cell carcinoma. Int J Dermatol 1989; 28: 591–4.Google Scholar
  50. 50.
    Green A, Battistutta D. Incidence and determinants of skin cancer in a high-risk Australian population. Int J Cancer 1990; 46: 356–61.Google Scholar
  51. 51.
    Strickland PT, Vitasa BC, West SK,et al. Quantitative carcinogenesis in man: solar ultraviolet B dose dependence of skin cancer in Maryland watermen. JNCI 1989; 81: 1910–3.Google Scholar
  52. 52.
    Magnus K. The Nordic profile of skin cancer incidence. A comparative epidemiological study of the three main types of skin cancer. Int J Cancer 1991; 47: 12–9.Google Scholar
  53. 53.
    Urbach F. Geographic pathology of skin cancer. In: Urbach F, ed. Biologic Effects of UVR with Emphasis on the Skin. Oxford, UK: Pergamon Press, 1969: 635–50.Google Scholar
  54. 54.
    Grodstein F, Speizer FE, Hunter DJ. A prospective study of incident squamous cell carcinoma of the skin in the Nurses' Health Study. JNCI 1995; 87: 1061–6.Google Scholar
  55. 55.
    Ramani ML, Bennett RG. High prevalence of skin cancer in World War II servicemen stationed in the Pacific theater. J Am Acad Dermatol 1993; 28: 733–7.Google Scholar
  56. 56.
    Urbach F, Rose DB, Bonnem M. Genetic and environmental interactions in skin carcinogenesis. Environmental Cancer. Baltimore, MD (USA): Williams & Wilkins, 1972: 355–71.Google Scholar
  57. 57.
    Gallagher RP, Hill GB, Bajdik CD,et al. Sunlight exposure, pigmentation factors, and risk of nonmelanocytic skin cancer. II. Squamous cell carcinoma. Arch Dermatol 1995; 131: 164–9.Google Scholar
  58. 58.
    Hogan DJ, Lane PR, Gran L, Wong D. Risk factors for squamous cell carcinoma of the skin in Saskatchewan, Canada. J Dermatol Sci 1990; 1: 97–101.Google Scholar
  59. 59.
    Thompson SC, Jolley D, Marks R. Reduction of solar keratoses by regular sunscreen use. N Engl J Med 1993; 329: 1147–51.Google Scholar
  60. 60.
    Naylor MF, Boyd A, Smith DW, Cameron GS, Hubbard D, Neldner KH. High sun protection factor sunscreens in the suppression of actinic neoplasia. Arch Dermatol 1995; 131: 170–5.Google Scholar
  61. 61.
    Lerman S. Light induced changes in ocular tissues. In: Miller D, ed. Clinical Light Damage to the Eye. New York, NY (USA): Springer-Verlag, 1987: 183–215.Google Scholar
  62. 62.
    Neugut AI, Kizelnik-Freilich S, Ackerman C. Black-white differences in risk for cutaneous, ocular, and visceral melanomas. Am J Public Health 1994; 84: 1828–9.Google Scholar
  63. 63.
    Polednak AP, Flannery JT. Brain, other central nervous system, and eye cancer. Cancer 1995; 75: 330–7.Google Scholar
  64. 64.
    Raivio I. Uveal melanoma in Finland. An epidemiological, clinical, histological and prognostic study. Acta Ophthal-mol 1977; Suppl: 1–64.Google Scholar
  65. 65.
    Scotto J, Fraumeni JF Jr, Lee JA. Melanomas of the eye and other noncutaneous sites: epidemiologic aspects. JNCI 1976; 56: 489–91.Google Scholar
  66. 66.
    Gislason I, Magnusson B, Tulinius H. Malignant melanoma of the uvea in Iceland 1955–1979. Acta Ophthalmol (Copenh) 1985; 63: 389-94.Google Scholar
  67. 67.
    Schwartz SM, Weiss NS. Place of birth and incidence of ocular melanoma in the United States. Int J Cancer 1988; 41: 174–7.Google Scholar
  68. 68.
    Doll R. Urban and rural factors in the aetiology of cancer. Int J Cancer 1991; 47: 803–10.Google Scholar
  69. 69.
    Iscovich J, Ackerman C, Andreev H, Pe'er J, Steinitz R. An epidemiological study of posterior uveal melanoma in Israel, 1961–1989. Int J Cancer 1995; 61: 291-5.Google Scholar
  70. 70.
    Saftlas AF, Blair A, Cantor KP, Hanrahan L, Anderson HA. Cancer and other causes of death among Wisconsin farmers. Am J Ind Med 1987; 11: 119–29.Google Scholar
  71. 71.
    Gallagher RP, Elwood JM, Rootman J. Epidemiologic aspects of intraocular malignant melanoma. Cancer Treat Res 1988; 43: 73–84.Google Scholar
  72. 72.
    Milham SJ. Occupational Mortality in Washington State 1950–1979. Cincinnati, OH (USA): National Institute for Occupational Safety and Health. 1983; DHSS (NIOSH) Pub. No. 83-116.Google Scholar
  73. 73.
    Office of the Population Censuses and Surveys. Occupational Mortality: the Registrar General's Decennial Supplement for Great Britain 1979–80, 1982-83. London, UK: Her Majesty's Stationery Office, 1986; Series DS No. 6.Google Scholar
  74. 74.
    Vågerö D, Swerdlow AJ, Beral V. Occupation and malignant melanoma: a study based on cancer registration data in England and Wales and in Sweden. Br J Ind Med 1990; 47: 317–24.Google Scholar
  75. 75.
    Horn EP, Hartge P, Shields JA, Tucker MA. Sunlight and risk of uveal melanoma. JNCI 1994; 86: 1476–8.Google Scholar
  76. 76.
    Coroneo MT, Muller-Stolzenburg NW, Ho A. Peripheral light focusing by the anterior eye and the ophthalmohe-lioses. Ophthalmic Surg 1991; 22: 705–11.Google Scholar
  77. 77.
    Narayanan P, Merriam JC, Vazquez ME, Dillon J. Experimental model of light focusing of the peripheral cornea. Invest Ophthalmol Vis Sci 1996; 37: 37–41.Google Scholar
  78. 78.
    Holly EA, Aston DA, Char DH, Kristiansen JJ, Ahn DK. Uveal melanoma in relation to ultraviolet light exposure and host factors. Cancer Res 1990; 50: 5773–7.Google Scholar
  79. 79.
    Van Hees CL, De Boer A, Jager MJ, et al. Are atypical nevi a risk factor for uveal melanoma? A case-control study. J Invest Dermatol 1994; 103: 202–5.Google Scholar
  80. 80.
    Gallagher RP, Elwood JM, Rootman J,et al. Risk factors for ocular melanoma: Western Canada Melanoma Study. JNCI 1985; 74: 775–8.Google Scholar
  81. 81.
    Tucker MA, Shields JA, Hartge P,et al. Sunlight exposure as risk factor for intraocular malignant melanoma. N Engl J Med 1985; 313: 789–92.Google Scholar
  82. 82.
    Seddon JM, Gragoudas ES, Glynn RJ, Egan KM, Albert DM, Blitzer PH. Host factors, UV radiation, and risk of uveal melanoma. A case-control study. Arch Ophthalmol 1990; 108: 1274–80.Google Scholar
  83. 83.
    Ajani UA, Seddon JM, Hsieh C-c, Egan KM, Albert DM, Gragoudas ES. Occupation and risk of uveal melanoma. An exploratory study. Cancer 1992; 70: 2891–900.Google Scholar
  84. 84.
    Holly EA, Aston DA, Ahn DK, et al. Intraocular melanoma linked to occupations and chemical exposures. Epidemiology 1996; 7: 55–61.Google Scholar
  85. 85.
    Ni C, Searl SS, Kriegstein HJ, Wu BF. Epibulbar carcinoma. Int Ophthalmol Clin 1982; 22: 1–33.Google Scholar
  86. 86.
    Newton R, Ferlay J, Reeves G, Beral V, Parkin DM. Effect of ambient solar ultraviolet radiation on incidence of squamous-cell carcinoma of the eye. Lancet 1996; 347: 1450–1.Google Scholar
  87. 87.
    Lee GA, Williams G, Hirst LW, Green AC. Risk factors in the development of ocular surface epithelial dysplasia. Ophthalmology 1994; 101: 360–4.Google Scholar
  88. 88.
    Hall P, Rosendahl I, Mattsson A, Einhorn S. Non-Hodgkin's lymphoma and skin malignancies-shared etiology? Int J Cancer 1995; 62: 519–22.Google Scholar
  89. 89.
    Adami J, Frisch M, Yuen J, Glimelius B, Melbye M. Evidence of an association between non-Hodgkin's lymphoma and skin cancer. Br Med J 1995; 310: 1491–5.Google Scholar
  90. 90.
    Frisch M, Melbye M. New primary cancers after squamous cell skin cancer. Am J Epidemiol 1995; 141: 916–22.Google Scholar
  91. 91.
    Levi F, Randimbison L, Te VC, La Vecchia C. Non-Hodgkin's lymphomas, chronic lymphocytic leukaemias and skin cancers. Br J Cancer 1996; 74: 1847–50.Google Scholar
  92. 92.
    Frisch M, Hjalgrim H, Olsen JH, Melbye M. Risk for subsequent cancer after diagnosis of basal-cell carcinoma. A population-based, epidemiologic study. Ann Int Med 1996; 125: 815–21.Google Scholar
  93. 93.
    Wassberg C, Thorn M, Yuen J, Ringborg U, Hakulinen T. Second primary cancers in patients with cutaneous malignant melanoma: a population-based study in Sweden. Br J Cancer 1996; 73: 255–9.Google Scholar
  94. 94.
    McMichael AJ, Giles GG. Have increases in solar ultraviolet exposure contributed to the rise in incidence of non-Hodgkin's lymphoma? Br J Cancer 1996; 73: 945–50.Google Scholar
  95. 95.
    Hartge P, Devesa SS, Grauman D, Fears TR, Fraumeni JF Jr. Non-Hodgkin's lymphoma and sunlight. JNCI 1996; 88: 298–300.Google Scholar
  96. 96.
    Garland CF, Garland FC. Dosunlight and vitamin Dreduce the likelihood of colon cancer? Int J Epidemiol 1980; 9: 227–31.Google Scholar
  97. 97.
    Garland FC, Garland CF, Gorham ED, Young JF. Geo-graphic variation in breast cancer mortality in the United States: a hypothesis involving exposure to solar radiation. Prev Med 1990; 19: 614–22.Google Scholar
  98. 98.
    Emerson JC, Weiss NS. Colorectal cancer and solar radiation. Cancer Causes Control 1992; 3: 95–9.Google Scholar
  99. 99.
    Gorham ED, Garland FC, Garland CF. Sunlight and breast cancer incidence in the USSR. Int J Epidemiol 1990; 19: 820–4.Google Scholar
  100. 100.
    Brash DE. UV mutagenic photoproducts in Escherichia coli and human cells: a molecular genetics perspective on human skin cancer. Photochem Photobiol 1988; 48: 59–66.Google Scholar
  101. 101.
    Freeman SE, Hacham H, Gange RW, Maytum DJ, Sutherland JC, Sutherland BM. Wavelength dependence of pyrimidine dimer formation in DNA of human skin irra-diated in situ with ultraviolet light. Proc Natl Acad Sci USA 1989; 86: 5605–9.Google Scholar
  102. 102.
    Sage E. Distribution and repair of photolesions in DNA: genetic consequences and the role of sequence context. Photochem Photobiol 1993; 57: 163–74.Google Scholar
  103. 103.
    Hutchinson F. Induction of tandem-base change mutations. Mutat Res 1994; 309: 11–5.Google Scholar
  104. 104.
    Kraemer KH, Lee MM, Andrews AD, Lambert WC. The role of sunlight and DNA repair in melanoma and non-melanoma skin cancer. The xeroderma pigmentosum paradigm. Arch Dermatol 1994; 130: 1018–21.Google Scholar
  105. 105.
    Bridges B. Sunlight, DNA damage and skin cancer: a new perspective. Jpn J Cancer Res 1990; 81: 105–7.Google Scholar
  106. 106.
    Barrett SF, Robbins JH, Tarone RE, Kraemer KH. Evidence for defective repair of cyclobutane pyrimidine dimers with normal repair of other DNA photoproducts in a transcrip-tionally active gene transfected into Cockayne syndrome cells. Mutat Res 1991; 255: 281–91.Google Scholar
  107. 107.
    Brash DE, Rudolph JA, Simon JA,et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 1991; 88: 10124–8.Google Scholar
  108. 108.
    Pierceall WE, Mukhopadhyay T, Goldberg LH, Anan-thaswamy HN. Mutations in the p53 tumor suppressor gene in human cutaneous squamous cell carcinomas. Mol Carcinog 1991; 4: 445–9.Google Scholar
  109. 109.
    Ziegler A, Leffell DJ, Kunala S,et al. Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci USA 1993; 90: 4216–20.Google Scholar
  110. 110.
    Rady P, Scinicariello F, Wagner RF Jr, Tyring SK. p53 mutations in basal cell carcinomas. Cancer Res 1992; 52: 3804–6.Google Scholar
  111. 111.
    Molès JP, Moyret C, Guillot B,et al. p53 gene mutations in human epithelial skin cancers. Oncogene 1993; 8: 583–8.Google Scholar
  112. 112.
    Burns JE, Baird MC, Clark LJ, et al. Gene mutations and increased levels of p53 protein in human squamous cell carcinomas and their cell lines. Br J Cancer 1993; 67: 1274–84.Google Scholar
  113. 113.
    van der Riet P, Karp D, Farmer E, et al. Progression of basal cell carcinoma through loss of chromosome 9q and inactivation of a single p53 allele. Cancer Res 1994; 54: 25–7.Google Scholar
  114. 114.
    Ziegler A, Jonason AS, Leffell DJ, et al. Sunburn and p53 in the onset of skin cancer. Nature 1994; 372: 773–6.Google Scholar
  115. 115.
    Ziegler A, Jonason AS, Simon J, Leffell DJ, Brash DE. Tumor suppressor gene mutations and photocarcinogenesis. Photochem Photobiol 1996; 63: 432–5.Google Scholar
  116. 116.
    Nakazawa H, English D, Randell PL,et al. UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc Natl Acad Sci USA 1994; 91: 360–4.Google Scholar
  117. 117.
    Daya-Grosjean L, Dumaz N, Sarasin A. The specificity of p53 mutation spectra in sunlight induced human cancers. J Photochem Photobiol B 1995; 28: 115–24.Google Scholar
  118. 118.
    Pollock PM, Pearson JV, Hayward NK. Compilation of somatic mutations of the CDKN2 gene in human cancers-non-random distribution of base substitutions. Genes Chromosom Cancer 1996; 15: 77–88.Google Scholar
  119. 119.
    Gailani MR, Leffell DJ, Ziegler A, Gross EG, Brash DE, Bale AE. Relationship between sunlight exposure and a key genetic alteration in basal cell carcinoma. JNCI 1996; 88: 349–54.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Dallas R. English
    • 1
  • Bruce K. Armstrong
    • 2
  • Anne Kricker
    • 3
  • Claire Fleming
    • 2
  1. 1.Department of Public HealthThe University of Western AustraliaPerthAustralia
  2. 2.NSW Cancer Council WoolloomoolooAustralia
  3. 3.National Breast Cancer Center WoolloomoolooAustralia

Personalised recommendations