Cellulose

, Volume 4, Issue 3, pp 173–207 | Cite as

Cellulose: the structure slowly unravels

  • ANTOINETTE C. O'SULLIVAN

Abstract

This article attempts to bring together basic and complex information which has been gathered on cellulose structure, principally that of native cellulose, over the last few decades. Even though advances have been made in the field of crystallography, powder crystallography cannot yield a definitive cellulose structure and single crystal diffraction is not possible due to the lack of suitable crystals. Knowledge obtained on the biosynthesis of native cellulose and on the polymorphy of cellulose and its derivatives help our understanding of ultrastructure. Many inconsistencies between early crystallographic studies of native cellulose have been clarified by the discovery that two polymorphs (α and β) of cellulose I exist. Models of the possible ultrastructural arrangements within native cellulose have been put forward over the decades; with advancement in technology, computer simulations of small and large systems are being created to test the viability of these ultrastructural models. It is hoped that this review will aid in the understanding of the complexity and uncertainties that still exist in this subject

structure computer model polymorphy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Aabloo, A., French, A. D., Mikelsaar, R. H. and Pertsin, A. J. (1994) Studies of crystalline native celluloses using potential-energy calculations. Cellulose 1, 161–168.CrossRefGoogle Scholar
  2. Ahmed, A. U., Ahmed, N., Aslam, J., Butt, N. M., Khan, Q. H. and Atta, M. A. (1976) Neutron diffraction on studies of the unit cell of cellulose II. J. Pol. Sci., Polymer Letters Edition 14, 561–564.CrossRefGoogle Scholar
  3. Allinger, N. L. (1977) Conformational analysis 130. MM2. A hydrocarbon Force Field utilising V1 and V2 Torsional Terms. J. Am. Chem. Soc. 99, 8127–8134.CrossRefGoogle Scholar
  4. Andress, K. R. (1929) The X-ray diagram of mercerized cellulose. Zietschrift Physikalische Chemie Abstracts B 4, 190–206.Google Scholar
  5. Arnott, A. and Scott, W. E. (1972) Accurate X-ray diffraction analysis of fibrous polysaccharides containing pyranose rings. Part 1. The linked-atom approach. Journal of the Chemical Society Perkin II 324–335.Google Scholar
  6. Astbury, W. T. (1933) Some problems in the X-ray analysis of the structure of animal hairs and other protein fibres. Transactions of the Faraday Society 29, 193–211.CrossRefGoogle Scholar
  7. Atalla, R. H. and Vanderhart, D. L. (1989) Studies on the structure of cellulose using Raman spectroscopy and solid state 13C NMR. In Cellulose and Wood: Chemistry and Technology, Proceedings of the tenth Cellulose Conference (C. Schuerch, ed.). New York: John Wiley and Sons, 169–187.Google Scholar
  8. Belton, P. S., Tanner, S. F., Cartier, N. and Chanzy, H. (1989) High-Resolution solid-state 13C NMR spectroscopy of Tunicin, an animal cellulose. Macromolecules 22, 1615–1617.CrossRefGoogle Scholar
  9. Bittiger, H. and Husemann, E. (1964a) Electron microscopic investigation of single-molecule crystals of cellulose tricarbanilates. Die Makromoleculare Chemie 75, 222–224.CrossRefGoogle Scholar
  10. Bittiger, H. and Husemann, E. (1964b) Electron microscopic investigation of the formation of monomolecular cellulose tricarbanilate crystals. ibid. 80, 239–241.CrossRefGoogle Scholar
  11. Blackwell, J. (1982) The macromolecular organization of cellulose and chitin. In Cellulose and other natural polymer systems (R. M. Brown, Jr., ed.). New York: Plenum Press.Google Scholar
  12. Blackwell, J. and Marchessault, R. H. (1971) Infrared spectroscopy of cellulose. In Cellulose and cellulose derivatives (N. Bikales and L. E. Segal, eds) New York: Wiley-Interscience.Google Scholar
  13. Bourret, A., Chanzy, H. and Lazaro, R. (1972) Crystallite features of Valonia cellulose by electron diffraction and dark-field electron microscopy. Biopolymers 11, 893–898.CrossRefGoogle Scholar
  14. Brady, J. W. (1986) Molecular dynamics simulation of α-D-glucose. J. Am. Chem. Soc. 108, 8153–8160.CrossRefGoogle Scholar
  15. Brett, C. and Waldron, K. (1990) In Physiology and Biochemistry of Plant Cell Walls London: Unwin Hyman, p. 72.Google Scholar
  16. Brown, C. J. (1966) The crystallite structure of sugars. Part V. A three-dimensional analysis of methyl β-xyloside. J. Chem. Soc. A, 922–927.Google Scholar
  17. Buleon, A. and Chanzy, H. (1978) Single crystals of cellulose II. J. Polymer Sci.: Polymer Physics Edition 16, 833–839.CrossRefGoogle Scholar
  18. Buleon, A. and Chanzy, H. (1980) Single crystals of cellulose IVII: Preparation and properties. ibid. 18, 1209–1217.CrossRefGoogle Scholar
  19. Chanzy, H. (1987) Proceedings of the International Symposium on Wood and Pulp Chemistry 1, 235–242.Google Scholar
  20. Chanzy, H. (1990) Aspects of cellulose structure. In Cellulose Sources and Exploitation: industrial utilisation biotechnology and physico-chemical properties (J. F. Kennedy, G. O. Phillips and P. A. Williams, eds). Chichester, UK: Ellis Horwood, pp. 3–12.Google Scholar
  21. Chanzy, H. and Henrissat, B. (1983) Electron microscopy study of the enzymic hydrolysis Valonia cellulose. Carbohydrate Polymers 3, 161–173.CrossRefGoogle Scholar
  22. Chanzy, H. and Vuong, R. (1985) In Polysaccharides, Topics in structure and morphology (E. D. T. Atkins, ed.). Basingstoke: MacMillan, p. 50.Google Scholar
  23. Chanzy, H., Imada, K., Mollard, A., Vuong, R. and Barnoud, F. (1979) Crystallographic aspects of sub-elementary cellulose fibrils occurring in the wall of rose cells cultured in vitro. Protoplasma 100, 303–316.CrossRefGoogle Scholar
  24. Chanzy, H., Henrissat, B. and Vuong, R. (1986) Structural changes of cellulose crystals during the reversible transformation cellulose I → IIII in Valonia. Holzforschung 40, 25–30.Google Scholar
  25. Chanzy, H., Henrissat, B., Vincendon, M., Tanner, S. F. and Belton, P. S. (1987) Solid-state C-13-NMR and electron microscopy study on the reversible cellulose I → cellulose IIII transformation in Valonia. Carbohydrate Res. 160, 1–11.CrossRefGoogle Scholar
  26. Claffey, W. and Blackwell, J. (1976) Electron diffraction of Valonia cellulose-Quantitative interpretation. Biopolymers 15, 1903–1915.CrossRefGoogle Scholar
  27. Davis, W. E., Barry, A. J., Peterson, F. C. and King, A. J. (1943) X-ray studies of reactions of cellulose in non-aqueous systems. II. Interaction of cellulose and primary amines. J. Am. Chem. Soc. 65, 1294–1300.CrossRefGoogle Scholar
  28. Debzi, E. M., Chanzy, H., Sugiyama, J., Tekely, P. and Excoffier, G. (1991) The Iα → Iβ transformation of highly crystalline cellulose by annealing in various mediums. Macromolecules 24, 6816–6822.CrossRefGoogle Scholar
  29. Dennis, D. T. and Preston, R. D. (1961) Constitution of cellulose microfibrils. Nature 191, 667–668.Google Scholar
  30. Dudley, R. L., Fyfe, C. A., Stephenson, P. J., Deslandes, Y., Hamer, G. K. and Marchessault, R. H. (1983) High-resolution 13C CP/MAS/NMR spectra of solid cellulose oligomers and the structure of cellulose II. J. Am. Chem. Soc. 105, 2469–2472.CrossRefGoogle Scholar
  31. Earl, W. L. and Vanderhart, D. L. (1981) Observations by high-resolution C-13 NMR of cellulose-I related to morphology and crystal-structure. Macromolecules 14, 570–574.CrossRefGoogle Scholar
  32. Emons, A. M. C. (1994) Winding threads around plant cells: a geometric model for microfibril deposition. Plant Cell and Environment 17, 3–14.CrossRefGoogle Scholar
  33. Emons, A. M. C. and Kieft, H. (1994) Winding threads around plant cells: Applications of the geometrical model for microfibril deposition. Protoplasma 180, 59–69.CrossRefGoogle Scholar
  34. Erata, T., Shikano, T., Takai, M. and Hayashi, J. (1995) NMR-studies on the structure of cellulose two dimensional solid-state NMR approach. Macromolecular Symposia 99, 25–29.Google Scholar
  35. Fengel, D. (1971) Ideas on ultrastructural organisation of cell-wall components. J. Polymer Science: Part C 36, 383–392.Google Scholar
  36. Fengel, D. (1992) Characteristics of cellulose by deconvoluting the OH valency range in FTIR spectra. Holzforschung 46, 283–288.CrossRefGoogle Scholar
  37. Fengel, D. and Stoll, M. (1989) Crystals of cellulose grown from TFA solution. Wood Sci. Technol. 23, 85–94.CrossRefGoogle Scholar
  38. Fengel, D. and Wegner, G. (1989) In Wood: Chemistry, Ultrastructure, Reactions. Berlin, New York: de Gruyter, p. 66.Google Scholar
  39. Fengel, D., Jacob, H. and Strobel, C. (1995) Influence of the alkali concentration on the formation of cellulose II-Study by X-ray diffraction and FTIR spectroscopy. ibid. 49, 505–511.Google Scholar
  40. Fink, H.-P., Philipp, B., Paul, D., Serimaa, R. and Paakkari, T. (1987) The structure of amorphous cellulose as revealed by wide-angle X-ray scattering. Polymer 28, 1265–1270.CrossRefGoogle Scholar
  41. Fink, H.-P., Hofmann, D. and Purz, H. J. (1990) Zur Fibrillurstruktur nativer Cellulose. Acta Polymerica 41, 131–137.CrossRefGoogle Scholar
  42. Fink, H.-P., Hofmann, D. and Philipp, B. (1995) Some Aspects of lateral chain order in cellulosics from X-ray scattering. Cellulose 2, 51–70.Google Scholar
  43. Fischer, D. G. and Mann, J. (1960) Crystalline modifications of cellulose. Part VI. Unit cell and molecular symmetry of cellulose I. J. Polymer Science 62, 189–194.CrossRefGoogle Scholar
  44. French, A. D. (1978) The crystal structure of native ramie cellulose. Carbohydrate Research 61, 67–80.CrossRefGoogle Scholar
  45. French, A. D. and Murphy, V. C. (1977) A virtual bond modelling study of cellulose I. In Cellulose chemistry and technology ACS Symposium Series 48 (J. C. Arthur, Jr., ed.). Washington DC: American Chemical Society, pp. 12–29.Google Scholar
  46. French, A. D. and Howley, P. S. (1989) Comparisons of structures proposed for cellulose. In Cellulose and Wood: Chemistry and Technology. Proceedings of the Tenth Cellulose Conference (C. Schuerch, ed.). New York: John Wiley and Sons, pp. 159–167.Google Scholar
  47. French, A. D., Miller, D. P. and Aabloo, A. (1993) Miniature crystal models of cellulose polymorphs and other carbohydrates. Int. J. Biol. Macromolecules 15, 30–36.Google Scholar
  48. Frey-Wyssling, A. (1953) Submicroscopic structure of the elementary fibers of cellulose. Experintia 9, 181–183.CrossRefGoogle Scholar
  49. Frey-Wyssling, A. (1954) The fine structure of cellulose microfibrils. Science 119, 80–82.Google Scholar
  50. Frey-Wyssling, A. and Mühlethaler, K. (1951) The fine structure of cellulose. Fortschritte der Chemie Organischer Naturstoffe 8, 1–27.Google Scholar
  51. Frommer, J. (1992) Scanning tunnelling microscopy and atomic force microscopy in organic chemistry. Angewandte Chemie International Edition English 31, 1298–1328.CrossRefGoogle Scholar
  52. Fujino, T. and Itoh, T. (1994) Architecture of the cell-wall of a green-alga, Oocystis-apiculata. Protoplasma 180, 39–48.CrossRefGoogle Scholar
  53. Gardiner, E. S. and Sarko, A. (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can. J. Chemistry 63, 173–180.CrossRefGoogle Scholar
  54. Gardner, K. H. and Blackwell, J. (1971) The substructure of crystalline cellulose and chitin microfibrils. J. Polymer Sci.: Part C 36, 327–340.Google Scholar
  55. Gardner, K. H. and Blackwell, J. (1974a) The structure of native cellulose, Biopolymers 13, 1975–2001.CrossRefGoogle Scholar
  56. Gardner, K. H. and Blackwell, J. (1974b) Hydrogen bonding in native cellulose. Biochimica et Biophysica Acta 343, 232–237.Google Scholar
  57. Gessler, K., Krauss, N., Steiner, T., Betzel, C., Sarko, A. and Saenger, W. (1995) β-D-Cellotetraose He, ihydrate as a structural model for cellulose II. An X-ray diffraction study. J. Am. Chem. Soc. 117, 11397–11406.CrossRefGoogle Scholar
  58. Hanley, S. J., Giasson, J., Revol, J.-F. and Gray, D. G. (1992) Atomic force microscopy of cellulose microfibrils-comparison with transmission electron-microscopy. Polymer 33, 4639–4642.CrossRefGoogle Scholar
  59. Haworth, W. N. (1925) A revision of the structural formula of glucose. Nature 116, 430.Google Scholar
  60. Hayashi, T. and Maclachlan, G. (1984) Pea xyloglucan and cellulose. 2. Macromolecular Organisation. Cell Physiology 75, 596–604.Google Scholar
  61. Hayashi, J., Sufoka, A., Ohkita, J. and Watanabe, S. (1975) The conformation of existence of cellulose IIII, IIIII, IVI and IVII by X-ray method. J. Polymer Sci.: Polymer Letters Edition 13, 23–27.CrossRefGoogle Scholar
  62. Hayashi, J., Yamada, T. and Shimizu, Y.-L. (1989) Memory phenomenon of the original crystal structure in allomorphs of Na-cellulose. In Cellulose and Wood: Chemistry and Technology, Proceedings of the Tenth Cellulose Conference (C. Schuerch, ed.). New York: John Wiley and Sons, pp. 77–102.Google Scholar
  63. Heiner, A. P., Sugiyama, J. and Teleman, O. (1995) Crystalline cellulose Iα and Iβ studied by molecular dynamics simulation. Carbohydrate Res. 273, 207–223.CrossRefGoogle Scholar
  64. Henrissat, B. and Chanzy, H. (1985) Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulose action. Febs Letters 184, 285–288.CrossRefGoogle Scholar
  65. Henrissat, B., Perez, S., Tvaroska, I. and Winter, W. (1987) Multidisciplinary approaches to the structure of model compounds for cellulose II. In The Structure of Cellulose. Washington DC: American Chemical Society, pp. 38–66.Google Scholar
  66. Herbert, J. J. and Muller, L. L. (1974) An electron diffraction study of the crystal structure of native cells. J. Appl. Polymer Sci. 18, 3373–3377.CrossRefGoogle Scholar
  67. Hermans, P. H. (1949) Physics and Chemistry of Cellulose Fibres. New York: Elsevier, pp. 13–20.Google Scholar
  68. Hermans, P. H. and Weidinger, A. (1949) X-ray studies on the crystallinity of cellulose. J. Polymer Sci. 4, 135–144.CrossRefGoogle Scholar
  69. Hess, K. and Kissig, H. (1941) Zur Kenntnis der Hochtemperatur-Modifikation der Cellulose (Cellulose IV). Zietschrift Physikalische Chemie B 49, 235–239.Google Scholar
  70. Heyn, A. N. J. (1966) The microcrystalline structure of cellulose in cell walls of cotton, ramie and jute fibres as revealed by negative staining of sections. J. Cell Biol. 29, 181–197.CrossRefGoogle Scholar
  71. Honjo, G. and Watanabe, M. (1958) Examination of cellulose fibre by the low-temperature specimen method of electron diffraction and electron microscopy. Nature 181, 326–328.CrossRefGoogle Scholar
  72. Hooft, R. W. W., van Eijck, B. P. and Kroon, J. (1992) Use of molecular dynamics methods in conformational analysis. Glycol A model story. J. Chemical Physics 97, 3639–3641.CrossRefGoogle Scholar
  73. Horii, F., Hirai, A. and Kitamaru, R. (1982) Solid-state high-resolution 13C NMR studies of regenerated cellulose samples with different crystallinities. Polymer Bulletin 8, 163.CrossRefGoogle Scholar
  74. Horii, F., Hirai, A. and Kitamaru, R. (1987a) CP/MAS C-13 NMR approach to the structural-analysis of cellulose. Polymers for Fibers and Elastomers 260, 27, ACS Symposium Series, American Chemical Society.Google Scholar
  75. Horii, F., Hirai, A. and Kitamaru, R. (1987b) CP/MAS C-13 NMR spectra of the crystalline components of native cellulose. Macromolecules 20, 2117–2120.CrossRefGoogle Scholar
  76. Ioelovitch, M. (1992) On the supermolecular structure of native and isolated cellulose samples. Acta Polymerica 43, 110–113.CrossRefGoogle Scholar
  77. Jacob, H. F., Fratzl, P. and Tschegg, S. E. (1994) Size and arrangement of elementary cellulose fibrils in wood cells-a small angle X-ray scattering study of Picea-Abies. J. Struct. Biol. 113, 13–22.CrossRefGoogle Scholar
  78. Khalatur, P. G., Marchenko, G. N., Pletneve, S. G. and Khrapkovskii, G. M. (1986) Computer simulation of cellulose by the methods of molecular and brownian dynamics. Doklady Akademii Nauk. SSSR 291, 157–162.Google Scholar
  79. Kimur, S. and Itoh, T. (1995) Evidence for the role of the glomerulocyte in cellulose synthesis in the tunicate, Metandrocarpa uedai. Protoplasma 186, 24–33.CrossRefGoogle Scholar
  80. Koehler, J., Saenger, W. and van Gunsteren, W. F. (1987) A molecular dynamics simulation of crystalline α-cyclodextrin hexahydrate. Eur. Biophys. J. 15, 197–210.CrossRefGoogle Scholar
  81. Kolpak, F. J. and Blackwell, J. (1976) Determination of the structure of cellulose II. Macromolecules 9, 273–278.CrossRefGoogle Scholar
  82. Kolpak, F. J., Weih, M. and Blackwell, J. (1978) Mercerization of cellulose: 1. Determination of the structure of mercerized cotton. Polymer 19, 123–131.CrossRefGoogle Scholar
  83. Kooijman, J., van Eijck, B. P. and Kroon, J. (1992) Molecular dynamics simulations of crystal structures containing charged molecules. J. Mol. Struct. 268, 283–292.CrossRefGoogle Scholar
  84. Kratky, O. and Mark, H. (1938) Supermolecular structure of fibers. Papier-Fabr. 36, 345–348.Google Scholar
  85. Kroon-Batenburg, L. M. J. and Kroon, J. (1990) Solvent effect on the conformation of the hydroxymethyl groups established by molecular dynamics simulations of methyl-β-D-glucoside in water. Biopolymers 29, 1243–1248.CrossRefGoogle Scholar
  86. Kroon-Batenburg, L. M. J. and Kroon, J. (1992) The behaviour of model compounds of cellulose as `viewed' by MD simulation. Carbohydrates in the Netherlands 7, 6–10.Google Scholar
  87. Kroon-Batenburg, L. M. J., Bouma, B. and Kroon, J. (1996) Stability of cellulose structures studied by MD simulations. Could mercerized cellulose be parallel? Macromolecules 29, 5695–5699.CrossRefGoogle Scholar
  88. Kuga, S. and Brown, R. M. Jr. (1987) Lattice imaging of ramie cellulose. Polymer Communications 28, 311–314.Google Scholar
  89. Kuga, S., Takagi, S. and Brown, R. M. Jr. (1993) Native folded-chain cellulose II, Polymer 34, 3293–3297.CrossRefGoogle Scholar
  90. Kulshreshta, A. K. and Dweltz, N. E. (1973) Paracrystalline lattice disorder in cellulose I. Reappraisal of application of 2-phase hypothesis to analysis of powder X-ray diffractograms of native and hydrolysed cellulosic materials. J. Polymer Sci.: Polymer Physics Edition 11, 487–497.Google Scholar
  91. Kuutti, L., Peltonen, J., Pene, J. and Teleman, O. (1995) Identification and surface-structure of crystalline cellulose studied by atomic force microscope. Journal of Microscopy-Oxford 178, 1–6.Google Scholar
  92. Lamport, D. T. A. (1970) Cell wall metabolism. Ann. Rev. Plant Physiol. 21, 235–270.CrossRefGoogle Scholar
  93. Lee, J. H., Brown, R. M. Jr., Kuga, S., Shoda, S.-I. and Kobayashi, S. (1994) Assembly of synthetic cellulose I. Proc. Natl Acad. Sci. USA 91, 7425–7429.CrossRefGoogle Scholar
  94. Leeflang, B. R., Vliegerthart, J. F. G., Kroon-Batenburg, L. M. J., van Eijck, B. P. and Kroon, J. (1992) A 1H-NMR and MD study of intramolecular hydrogen bonds in methyl-β-cellobioside. Carbohydrate Research 230, 41–61.CrossRefGoogle Scholar
  95. Lenz, J. and Schurz, I. (1990) Fibrillar structure and deformation behaviour of regenerated cellulose fibres. Part II: Elementary fibrils and deformation. Cellulose Chem. Technol. 24, 679–692.Google Scholar
  96. Liang, C. Y. and Marchessault, R. H. (1959) Infrared spectra of Crystalline Polysaccharides. 1. Hydrogen bonds in Native Cellulose. J. Polymer Sci. 37, 385–395.CrossRefGoogle Scholar
  97. Lindenmeyer, P. H. (1965) Crystallisation and molecular folding (of Polymers). Science 147, 1256–1262.Google Scholar
  98. Macchi, E. and Palma, A. (1969) Morphological studies on precipitated cellulose. Die Makromolekulare Chemie 123, 286–288.CrossRefGoogle Scholar
  99. Mann, J. and Marrinan, H. J. (1958) Crystalline Modifications of Cellulose. Part II. A study with Plane-Polarised infrared radiation. J. Polymer Sci. 32, 357–370.CrossRefGoogle Scholar
  100. Marchessault, R. H. and Liang, C. Y. (1960) Infrared Spectra of Crystalline Polysaccharides. III. Mercerized Cellulose. ibid. 43, 71–84.CrossRefGoogle Scholar
  101. Marchessault, R. H. and Liang, C. Y. (1962) The infrared spectra of crystalline polysaccharides. VIII. Xylans. ibid. 59, 357–376.CrossRefGoogle Scholar
  102. Marchessault, R. H. and Sarko, A. (1967) X-ray structure of polysaccharides. In Advanced Carbohydrate Chemistry 22, (M. L. Wolfrom, ed.). New York: Academic Press, pp. 421–483.Google Scholar
  103. Marchessault, R. H. and Sundararajan, P. R. (1983) In Cellulose, in the Polysaccharides. New York: Academic Press, p. 11.Google Scholar
  104. Mark, R. E. (1967) In Cell wall mechanics of tracheids. New Haven: Yale University Press.Google Scholar
  105. Mark, R. E. (1971) Mechanical behaviour of cellulose in relation to cell wall theories. J. Polymer Sci.: Part C 36, 393–406.Google Scholar
  106. Mark, R. E., Koloni, P. N., Tung, R.-C. and Gillis, P. P. (1969) Cellulose: Refutation of a folded chain structure. Science 164, 72–73.Google Scholar
  107. Marrinan, M. and Mann, J. (1956) Infrared spectra of the crystalline modifications of cellulose. J. Polymer Sci. 21, 301–311.CrossRefGoogle Scholar
  108. Matsuda, Y., Kowsaka, K., Okajima, K. and Kamide, K. (1992) Structural change of cellulose contained in immature cotton boll during its growth. Polymer International 27, 347–351.Google Scholar
  109. Meyer, K. H. and Mark, H. (1928) The Structure of the Crystallised components of Cellulose. Berichte der Deutschen Chemica Gesellschaft 61B, 593–614.Google Scholar
  110. Meyer, K. H. and Misch, L. (1937) 31. Positions des atomes dans le nouveau modèle spatial de la cellulose. Helvetica Chimica Acta 20, 232–245.CrossRefGoogle Scholar
  111. Millane, R. P. and Narusiah, T. V. (1989) An X-ray fiber diffraction study of ramie cellulose I. In Cellulose and Wood: Chemistry and Technology, Proceedings of the Tenth Cellulose Conference (C. Schuerch, ed.). New York: John Wiley and Sons, pp. 39–51.Google Scholar
  112. Miller, D. P. and Li, A. (1989) Refinement of the crystal-structure of ramie cellulose I with additional meridional X-ray intensities. In Cellulose and Wood-Chemistry and Technology, Proceedings of the Tenth Cellulose Conference (C. Schuerch, ed.). New York: John Wiley and Sons, pp. 139–157.Google Scholar
  113. Morosoff, N. (1974) Never dried cotton fibres. Crystallinity and crystallite size. Journal of Applied Polymer Science 18, 1837–1854.CrossRefGoogle Scholar
  114. Muggli, R., Elias, H.-G. and Muhlethaler, K. (1969) Zum feinbau der Elementarfibrillen der Cellulose. Die Makromolekulare Chemie 121, 290–294.CrossRefGoogle Scholar
  115. Näslund, P., Vuong, R., Chanzy, H. and Jésior, J. C. (1988) Diffraction contrast transmission electronmicroscopy on flax fiber ultrathin cross-sections. Textile Research Journal 58, 414–417.Google Scholar
  116. Nickerson, R. F. (1941) Hydrolysis and catalytic oxidation of cellulosic materials. Hydrolysis of natural regenerated and substituted celluloses. Ind. Engin. Chem. 33, 1022–1027.CrossRefGoogle Scholar
  117. Nieduszynshi, L. and Atkins, E. D. T. (1970) Preliminary investigation of algal cellulose. 1. X-ray intensity data. Biochimica et Biophysica Acta 222, 109–118.Google Scholar
  118. Nishimura, H., Okano, T. and Sarko, A. (1991a) Mercerization of cellulose. 5. Crystal and molecular structure of Na-cellulose I. Macromolecules 24, 759–770.CrossRefGoogle Scholar
  119. Nishimura, H., Okano, T. and Sarko, A. (1991b) Mercerization of cellulose. 6. Crystal and molecular structure Na-cellulose IV, ibid. 771–778.Google Scholar
  120. Nyburg, S. C. (1961) Fibrous macromolecular substances. In X-ray Analysis of Organic Structures (L. F. Fieser and M. Fieser, eds). New York: Academic Press, pp. 302–314.Google Scholar
  121. Okamura, K. (1991) Structure of cellulose. In Wood and Cellulosic Chemistry (D. N.-S. Hon and N. Shiraishi, eds). New York: Marcel Dekker, pp. 89–111.Google Scholar
  122. Okano, T. and Sarko, A. (1984) Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures. J. Appl. Polymer Sci. 29, 4175–4182.CrossRefGoogle Scholar
  123. Okano, T. and Sarko, A. (1985) Mercerization of cellulose. II. Alkali-cellulose intermediates and a possible mercerization mechanism. ibid. 30, 325–332.CrossRefGoogle Scholar
  124. Okano, T., Koyanagi, A., Kondo, Y. and Sarko, A. (1989) Structural variation of native cellulose related to its source. In Cellulose and Wood: Chemistry and Technology, Proceedings of the Tenth Cellulose Conference (C. Schuerch, ed.). New York: John Wiley and Sons, pp. 53–65.Google Scholar
  125. Okuda, K., Tsekos, L. and Brown, R. M. Jr. (1994) Cellulose microfibril assembly in Erythrocladia subintegra Rosenv.: an ideal system for understanding the relationship between synthesising complexes (TCs) and microfibril crystallization. Protoplasma 180, 49–58.CrossRefGoogle Scholar
  126. O'Sullivan, A. C. (1995) Modelling of cellulose molecule interactions. Ph.D Thesis. University of Wales, Bangor, Gwynedd, UK.Google Scholar
  127. Paakkari, T., Serimaa, R. and Fink, H.-P. (1989) The structure of amorphous cellulose. Acta Polymerica 40, 731–734.CrossRefGoogle Scholar
  128. Pertsin, A. J., Nugmanov, O. K. and Marchenko, G. N. (1986) Crystal structure of cellulose polymorphs by potential energy calculations: 2. Regenerated and native celluloses. Polymer 27, 597–601.CrossRefGoogle Scholar
  129. Petitpas, T. and Mering, J. (1956) Molecular structure of cellulose II. Compt. Rend. 243, 47–50.Google Scholar
  130. PizziA.andEatonN.1984Thestructureofcellulosebyconformationalanalysis1.CellobioseandMethyl-β-cellobioside. Journal of Macromolecular Science-Chemistry A21, 1443–1446Google Scholar
  131. Pizzi, A. and Eaton, N. (1985a) The structure of cellulose by conformational analysis. 2. The cellulose polymer chain. ibid. A22, 105–138.Google Scholar
  132. Pizzi, A. and Eaton, N. (1985b) The structure of cellulose by conformational analysis. 3. Crystalline and amorphous structure of cellulose I. ibid. A22, 139–160.Google Scholar
  133. Pizzi A.and Eaton N. 1987 Thestructureofcellulosebyconformationalanalysis. Part4. Crystallinecellulose II, ibid. A24, 901–918Google Scholar
  134. Poppleton, B. J. and Mathieson, A. McL. (1968) Crystal structure of β-D-cellotetraose and its relationship to cellulose. Nature 219, 1046–1049.CrossRefGoogle Scholar
  135. Powell, M. J. D. (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer Journal 7, 155–162.CrossRefGoogle Scholar
  136. Preston, R. D. (1975) X-ray analysis and the structure of the components of plant cell walls. Physics Reports 21, 183–226.CrossRefGoogle Scholar
  137. Preston, R. D. (1986) Natural celluloses. In Cellulose: Structure, Modification and Hydrolysis (R. A. Young and R. M. Rowell, eds). New York: John Wiley and Sons, pp. 3–27.Google Scholar
  138. Preston, R. D. and Cronshaw, J. (1958) Constitution of the fibrillar and non-fibrillar components of the walls Valonia ventricosa. Nature 181, 248–250.CrossRefGoogle Scholar
  139. Purves, C. B. (1954) In Chain structure in cellulose and cellulose derivatives: Part 1 (Ott and Spurlin, eds). New York: Wiley-Interscience, pp. 54.Google Scholar
  140. Purz, H. J., Graf, H. and Fink, H.-P. (1995) Electron-microscopic investigations of fibrillar and coagulation structures of cellulose. Papier 49, 714.Google Scholar
  141. Rappé, A. K., Casewitt, C. J., Colwell, K. S., Goddard, W. A. and Skiff, W. M. (1991) Charge equilibrium for molecular dynamics simulations. J. Phys. Chem., US 95, 3358–3363.CrossRefGoogle Scholar
  142. Rees, D. A. (1970) Conformational analysis of polysaccharides. Part V. The Characterization of linkage conformations (chain conformations) by optical rotation at a single wavelength. Evidence for distortion of cyclohexa-amylose in aqueous solution. Optical rotation and the amylose conformation. J. Chem. Soc. B, 877–884.Google Scholar
  143. Rees, D. A. and Scott, W. E. (1971) Polysaccharide conformation. Part VI. Computer model-building for linear and branched pyranoglycans. Correlations with biological function. Preliminary Assessment of inter-residue forces in aqueous solution. Further interpretation of optical rotation in terms of chain conformation. ibid. 469–479.Google Scholar
  144. Rees, D. A. and Skerrett, R. J. (1968) Conformational analysis of cellobiose, cellulose and xylan. Carbohydrate Research 7, 334–348.CrossRefGoogle Scholar
  145. Rees, D. A. and Skerrett, R. J. (1970) Conformational analysis of polysaccharides. Part IV. Long-range contacts in some β-glucans by model building in the computer and the influence of oligosaccharide conformation or optical rotation. J. Chem. Soc. B, 189–193.Google Scholar
  146. Reis, D., Vian, B., Chanzy, H. and Roland, J.-C. (1991) Liquid crystal-type assembly of native cellulose-glucuronoxylans extracted from plant cell wall. Biology of the Cell 73, 173–178.CrossRefGoogle Scholar
  147. Reisling, S. and Brickmann, J. (1995) Theoretical investigations on the structure and physical properties of cellulose. Macromolecular theory and simulations 4, 725–743.CrossRefGoogle Scholar
  148. Revol, J. F. and Goring, D. A. I. (1983) Directionality of the fiber c-axis of cellulose crystallites in microfibrils of Valonia ventricosa. Polymer 24, 1547–1550.CrossRefGoogle Scholar
  149. Roche, E. and Chanzy, H. (1981) Electron microscopy study of the transformation of cellulose I into cellulose IIII in Valonia. Int. J. Biol. Macromolecules 3, 201–206.CrossRefGoogle Scholar
  150. Rowland, S. O. and Roberts, E. J. (1972) The nature of accessible surfaces in the microstructure of native cellulose. J. Polymer Sci. Part A1 10, 2447–2461.CrossRefGoogle Scholar
  151. Sarko, A. (1973) Conformation of native and regenerated cellulose. Presented at the Fourth Canadian Wood Chemistry Symposium. July 1993. Quebec, Canada.Google Scholar
  152. Sarko, A. (1978) What is the crystalline structure of cellulose. Tappi 61, 59–61.Google Scholar
  153. Sarko, A. (1987) Cellulose-How much do we know about its structure. In Wood and Cellulosics: Industrial utilization, biotechnology, structure and properties (J. F. Kennedy, ed.). Chichester, UK: Ellis Horwood, pp. 55–70.Google Scholar
  154. Sarko, A. and Marchessault, R. H. (1969) Supermolecular structures of polysaccharides. J. Polymer Sci.: Part C 28, 317–331.CrossRefGoogle Scholar
  155. Sarko, A. and Muggli, R. (1974) Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose II. Macromolecules 7, 486–494.CrossRefGoogle Scholar
  156. Sarko, A., Southwick, J. and Hayashi, J. (1976) Packing analysis of carbohydrates and polysaccharides 7. Crystal structure of cellulose IIII and its relationship to other cellulose polymorphs. ibid. 9, 857–863.CrossRefGoogle Scholar
  157. Sasaki, K. and Taylor, I. E. P. (1984) Specific labelling of cell-wall polysaccharides with myo-[2-H-3]-inositol during germination and growth of phaseolus-vulgaris L. Cell Physiology 25, 989–997.Google Scholar
  158. Scott, R. A. and Scheraga, H. A. (1965) Method for calculating internal rotation barriers. Journal of Chemical Physics 42, 2209–2215.CrossRefGoogle Scholar
  159. Shefter, E. and Trublood, K. N. (1965) The crystal and molecular structure of D (+)-barium uridine-51-phosphate. Acta Crystallographica 18, 1067–1077.CrossRefGoogle Scholar
  160. Simon, I., Scheraga, H. A. and Manley, R. St. J. (1988a) Structure of cellulose. 1. Low-energy conformations of single chains. Macromolecules 21, 983–990.CrossRefGoogle Scholar
  161. Simon, I., Glasser, L., Scheraga, H. A. and Manley, R. St. J. (1988b) Structure of cellulose. 2. Lowenergy crystalline arrangements. ibid. 21, 990–998.CrossRefGoogle Scholar
  162. Sjoström, E. (1981) In Wood Chemistry Fundamentals and Applications. New York: Academic Press, pp. 49.Google Scholar
  163. Sponsler, O. L. and Dore, W. H. (1926) The structure of ramie cellulose as derived from X-ray data. Fourth Colloid Symposium Monograph 41, 174–202.Google Scholar
  164. Sprague, J. T., Tai, J. C., Yuh, Y. and Allinger, N. L. (1987) The MMP2 calculation method. Journal of Computational Chemistry 8, 581–603.CrossRefGoogle Scholar
  165. Stipanovic, A. J. and Sarko, A. (1976) Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9, 851–857.CrossRefGoogle Scholar
  166. Sugiyama, J. (1992) Crystal forms of native cellulose. Mokuzai Gakkaishi 38, 723–731.Google Scholar
  167. Sugiyama, J. and Okano, T. (1989) Electron microscopic and X-ray diffraction study of cellulose IIII and cellulose I. In Cellulose and Wood: Chemistry and Technology, Proceedings of the Tenth Cellulose Conference (C. Schuerch, ed.). New York: John Wiley and Sons, pp. 119–127.Google Scholar
  168. Sugiyama, J., Persson, J. and Chanzy, H. (1991a) Combined IR and electron diffraction study of the polymorphism of native cellulose. Macromolecules 24, 2461–2466.CrossRefGoogle Scholar
  169. Sugiyama, J., Vuong, R. and Chanzy, H. (1991b) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. ibid. 24, 4168–4175.CrossRefGoogle Scholar
  170. Sugiyama, J., Chanzy, H. and Revol, J.-F. (1994) On the polarity of cellulose in the cell wall of Valonia. Planta 193, 260–265.CrossRefGoogle Scholar
  171. Sundaralingam, M. (1968) Some aspects of stereochemistry and hydrogen bonding of carbohydrates related to polysaccharide conformations. Biopolymers 6, 189–213.CrossRefGoogle Scholar
  172. Takahashi, Y. and Matsunaga, H. (1991) Crystal structure of native cellulose. Macromolecules 24, 3968–3969.CrossRefGoogle Scholar
  173. Tasker, S., Badyal, J. P. S., Backson, S. C. E. and Richards, R. W. (1994) Hydroxyl accessibility in celluloses. Polymer 35, 4717–4721.CrossRefGoogle Scholar
  174. Taylor, I. E. P. and Wallace, J. C. (1989) The structural association between cellulose and xyloglucan in the primary cell wall of beans. In Cellulose and Wood: Chemistry and Technology, Proceedings of the Tenth Cellulose Conference (C. Schuerch, ed.). New York: John Wiley and Sons, pp. 273–282.Google Scholar
  175. Tsekos, I., Reiss, H. D. and Schnepf, E. (1993) Cell-wall structure and supramolecular organization of the plasma membrane of marine red algae visualized by freeze-fracture. Acta Botanica Neerlandica 42, 119–132.Google Scholar
  176. Tsuboi, M. (1957) Infrared Spectrum and Crystal Structure of Cellulose. J. Polymer Sci. 25, 159–171.CrossRefGoogle Scholar
  177. VanderHart, D. L. and Atalla, R. H. (1984) Studies of microstructure in native celluloses using solid state C-13 NMR. Macromolecules 17, 1465–1472.CrossRefGoogle Scholar
  178. van Gunsteren. W. F. GROMOS, Groningen Molecular Simulation Computer Program Package, University of Groningen, Groningen, The Netherlands.Google Scholar
  179. van Gunsteren. W. F. and Berendsen, H. J. C. (1977) Algorithms for molecular dynamics and constraint dynamics. Molecular Physics 34, 1311–1327.CrossRefGoogle Scholar
  180. Verlhac, C., Dedier, J. and Chanzy, H. (1990) Availability of surface hydroxyl groups in Valonia and bacterial cellulose. J. Polymer Sci.: Part A: Polymer Chemistry 28, 1171–1177.CrossRefGoogle Scholar
  181. Von Nägeli, C. (1858) deDie Stärkeköner, Pflanzenphysiologische Untersuchungen, Die Stärkekeköner 2.Google Scholar
  182. Walton, A. G. and Blackwell, J. (1973) In Biopolymers Vol 22, New York: Academic Press, p. 468.Google Scholar
  183. Wellard, H. J. (1954) Variation in the lattice spacing of cellulose. J. Polymer Sci. 13, 471–476.CrossRefGoogle Scholar
  184. Wolters-Arts, A. M. C., van Amstel, T. and Derksen, J. (1993) Tracing cellulose microfibril orientation in inner primary cell walls. Protoplasma 175, 102–111.CrossRefGoogle Scholar
  185. Woodcock, C. and Sarko, A. (1980) Packing analysis of carbohydrates and polysaccharides. II Molecular and crystal structure of native ramie cellulose. Macromolecules 13, 1183–1187.CrossRefGoogle Scholar
  186. Woodcock, S., Henrissat, B. and Sugiyama, J. (1995) Docking of Congo Red to the surface of crystalline cellulose using molecular mechanics. Biopolymers 36, 201–210.CrossRefGoogle Scholar
  187. Yamamoto, H. and Horii, F. (1993) CP/MAS 13C NMR analysis of the Crystal Transformation Induced for Valonia Cellulose by Annealing at High Temperature. Macromolecules 26, 1313–1317.CrossRefGoogle Scholar
  188. Yamamoto, H. and Horii, F. (1994) In situ Crystallization of Bacterial Cellulose I. Influences of polymeric additives, stirring and temperature on the formation celluloses Iα and Iβ as revealed by cross polarization/magic angle spinning (CP/MAS) 13C NMR spectroscopy. Cellulose 1, 57–66.CrossRefGoogle Scholar
  189. Yamamoto, H., Horii, F. and Odani, H. (1989) Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures. Macromolecules 22, 4130–4132.CrossRefGoogle Scholar
  190. Zeronian, S. H. and Ryu, H.-S. (1987) Properties of cotton fibres containing the cellulose IV crystal structure. J. Appl. Polymer Sci. 33, 2587–2604.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • ANTOINETTE C. O'SULLIVAN
    • 1
  1. 1.Department of Chemistry and School of Agriculture and Forestry SciencesUniversity of WalesBangor, GwyneddUK

Personalised recommendations