Journal of Applied Electrochemistry

, Volume 27, Issue 4, pp 414–421 | Cite as

Electrochemical investigation of copper oxide films formed by oxygen plasma treatment

  • K. DRAOU


Linear potential sweep voltammetry was used to characterize the copper oxides grown on a metal substrate when exposed to a low pressure inductively coupled oxygen plasma. This study confirms the formation of a precursor oxide CuxO (x > 4), two copper(i) oxides Cu2-xO and Cu3O2 and copper(ii) oxide CuO. The electrochemical reduction curve of CuxO is characterized in aqueous solution (pH 9.2) by a minor peak near –0.5V vs SCE while the two Cu(i) oxides present one reduction peak at −0.8 VvsSCE and cannot be electrochemically separated; CuO is reduced to Cu(i) at −0.65V vs SCE. The reduction potentials of the copper(i) and copper(ii) oxides vary with the oxide layer thickness which increases with the time of exposure to the plasma and the injected electric power and decreases as the distance between the sample and the 1st coil increases for given treatment parameters. In addition, a mechanism is proposed for the reduction of thin films containing the copper(i) and copper(ii) oxides formed after plasma treatment.


Copper Plasma Treatment Reduction Peak Copper Oxide Metal Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. L. Brisset, S. Longchamp, P. Surbled and M. Vittecoq, Proc 4th International Symposium on High Pressure Low Temperature Plasma Chemistry, Bratislava, Slovakia (1993) p. 117.Google Scholar
  2. [2]
    A. Goldman and R. S. Sigmond, J. Electrochem. Soc. 132 (1985) 2842.Google Scholar
  3. [3]
    M. Carballeira, A. Carballeira and J. Y. Gal, Proceedings of the 14th International Conference on Electric Contacts, Paris, France (1988) p. 239.Google Scholar
  4. [4]
    J. Kúudela, V. Sobek, M. Luknárova P. Lukác and J. D. Skalný, Acta, Physica Univ. Comenianae 33 (1992) 209.Google Scholar
  5. [5]
    B. G. Bagley, L. H. Greene, J. M. Tarascon and G. W. Hull, Appl. Phys. Lett. 51 (1987) 622.Google Scholar
  6. [6]
    A. Yoshida, H. Tamura, S. Morohashi and S. Hasuo, ibid. 55 (1989) 2354.Google Scholar
  7. [7]
    R. L. Deutscher and R. Woods, J. Appl. Electrochem. 16 (1986) 413.Google Scholar
  8. [8]
    M. Lenglet, K. Kartouni and D. Delahaye, ibid. 21 (1991) 697.Google Scholar
  9. [9]
    J. M. Machefert, M. Lenglet, D. Blavette, A. Menand and A. D' Huysser, 'Structure and Reactivity of Surfaces', Elsevier Sciences Publishers B.V., Amsterdam (1989) p. 625.Google Scholar
  10. [10]
    B. Lefez, K. Kartouni, M. Lenglet, D. Rönnow and C. G. Ribbing, Surf. & Interface Anal. 22 (1994) 451.Google Scholar
  11. [11]
    E. Sutter, C. Fiaud and D. Lincot, Electrochim. Acta 38 (1993) 1471.Google Scholar
  12. [12]
    H. Pops and D. R. Hennessy, Wire J. 10 (1977) 50.Google Scholar
  13. [13]
    H. Strehblow and B. Titze, Electrochim. Acta, 25 (1980) 839.Google Scholar
  14. [14]
    M. R. Gennerro de Chialvo, S. L. Marchiano and A. J. Arvia, J. Appl. Electrochem. 14 (1984) 165.Google Scholar
  15. [15]
    U. R. Evans and A. Miley, Nature 139 (1937) 283.Google Scholar
  16. [16]
    [16] P. Pascal, Nouveau Traité de Chimie Minérale III, Masson, Paris (1957).Google Scholar
  17. [17]
    D. Personn and C. Leygraf, J. Electrochem. Soc. 140 (1993)1256.Google Scholar
  18. [18]
    J. Y. Malvault, J. Lopitaux, D. Delahaye and M. Lenglet, J. Appl. Electrochem. 25 (1995) 841.Google Scholar
  19. [19]
    H. Wieder and A. W. Czanderna, J. Phys. Chem. 66 (1962) 816.Google Scholar
  20. [20]
    E. G. Clarke and A. W. Czanderna, Surf. Sci. 49 (1975 529.Google Scholar
  21. [21]
    H. Neumeister and W. Jaenike, Z. Phys. Chem. B108 (1977) 217.Google Scholar
  22. [22]
    M. Lenglet and K. Kartouni, La Revue de Métallugie-CIT/ Science et Génie des Matériaux 12 (1993)1637.Google Scholar
  23. [23]
    S. Brahms, J. P. Dahl and S. Nikitine, J. Phys. C3-32 (1967) 28.Google Scholar
  24. [24]
    P. Marksteiner, P. Blaha and K. Schwarz, Z. Physik. B64 (1986) 119.Google Scholar
  25. [25]
    H. Wieder and A. W. Czanderna, J. Appl. Phys. 37 (1966) 184.Google Scholar
  26. [26]
    J. Bloem, Phil. Res. Rep. 13 (1958) 167.Google Scholar
  27. [27]
    C. K. Teh and F. L. Weichman, Can. J. Phys. 61 (1983) 1423.Google Scholar
  28. [28]
    R. G. Greenler, R. R. Rahn and J. P. Schwartz. J. Catal. 23 (1971) 42.Google Scholar
  29. [29]
    N. Bellakhal, Thèse, Université Paris VI (1995).Google Scholar
  30. [30]
    N. Bellakhal, K. Draou, B. Chéron, M. Lenglet and J. L. Brisset, Proceedings ISPC 12 Minneapolis, USA (1995) p.1583.Google Scholar
  31. [31]
    H. H. Strehblow and B. Titze, Electrochim. Acta, 25 (1980) 839.Google Scholar
  32. [32]
    S. M. Wilhelm, Y. Tanizawa, C.Y. Liu and N. Hackerman, Corros. Sci. 22 (1982) 791.Google Scholar
  33. [33]
    B. Millet, Thèse, Université Paris VI (1994).Google Scholar
  34. [34]
    E. Beucher, B. Lefez and M. Lenglet, Phys. Stat. Sol. 136 (1993) 139.Google Scholar
  35. [35]
    N. A. Tolstoi and V. A. Bonch-Bruevich, Sov. Phys. Solid State 13 (1971) 1135.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
  • K. DRAOU
    • 1
    • 1
  1. 1.Laboratoire d' Analyse Spectroscopique et de Traitement de Surface des Materiaux (Equipe LEICA)UFR des SciencesMont Saint Aignan CedexFrance

Personalised recommendations