Biodiversity & Conservation

, Volume 6, Issue 1, pp 1–18 | Cite as

Dead trees left in clear-cuts benefit saproxylic Coleoptera adapted to natural disturbances in boreal forest

  • Lauri Kaila
  • Petri Martikainen
  • Pekka Punttila


Forest management alters the pattern of forest dynamics from that in natural conditions in the boreal region. In order to examine how certain forestry measures matching natural dynamics affect forest insects, we compared assemblages of saproxylic Coleoptera on dead, standing birch trunks left behind in eight clear-cut areas with corresponding assemblages in seven mature forests in southern and eastern Finland. We used trunk-window traps for sampling. Distinct beetle assemblages were associated with the different habitats. Median numbers of species or specimens caught did not differ between closed forests and clear-cuts, but individual beetle species occurred unevenly among the habitats. Several beetle species associated with open forest habitat, e.g. burned forests or storm-damage areas, including species regarded as threatened in Finland, were found almost exclusively, in clear-cuts. Correspondingly, a number of beetle species occurring frequently in closed forests were not found in clear-cuts. We conclude that dead trunks left in the clear-cut areas may host not only generalist saproxylic species but also many beetle species specialized to warm, sun-exposed environments, and such species may not be able to survive in closed forests. Management measures matching suppressed natural disturbances are found useful in preserving diversity in managed forests.

saproxylic Coleoptera clear-cut diversity conservation management decaying birch. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahnlund, H. and Lindhe, A. (1992) Endangered wood-living insects in coniferous forests-some thoughts from studies of forest-fire sites, outcrops and clearcuttings in the province of Sörmland, Sweden. Ent. Tidskrift 113, 13–23. (In Swedish with English summary.)Google Scholar
  2. Ahti, T., Hämet-Ahti, L. and Jalas, J. (1968) Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fennici 5, 169–211.Google Scholar
  3. Assing, V. (1993) Zur Bionomie von Xantholinus rheanus Coiff. und anderen bodenbewohnenden Xantholinien (Col. Staphylinidae) in Nordwestdeutschland. Zool. Jahrb. Syst. 120, 13–38.Google Scholar
  4. Austin, M.P. (1986) The theoretical basis of vegetation science. Trends Ecol. Evol. 1, 161–4.Google Scholar
  5. Austin, M.P. (1991) Vegetation theory in relation to cost-efficient surveys. In Nature Conservation: Cost Effective Biological Surveys and Data Analysis (C.R. Margules and M.P. Austin, eds) pp. 17–63. East Melbourne, Victoria: CSIRO.Google Scholar
  6. Benick, L. (1952) Pilzkäfer und Käferpilzen. Ökologische und statistische Untersuchungen. Acta Zool. Fennica 70, 1–250.Google Scholar
  7. Berg, Å., Ehnström, B., Gustafsson, L., Hallingbäck, T., Jonsell, M. and Weslien, J. (1994) Threatened plant, animal, and fungus species in Swedish forests: distribution and habitat associations. Conserv. Biol. 8, 718–731.Google Scholar
  8. Biström, O. and Väisänen, R. (1988) Ancient forest invertebrates of the Pyhän-Häkki national park in Central Finland. Acta Zool. Fennica 185, 1–69.Google Scholar
  9. Ehnström, B. and Waldén, H.W. (1986) Faunavård i skogsbruket 2: Den lägre faunan. Jönköping. (In Swedish.)Google Scholar
  10. Esseen, P.-A., Ehnström, B., Ericson, L. and Sjöberg, K. (1992) Boreal forests-the focal habitats of Fennoscandia. In Ecological Principles of Nature Conservation (L. Hansson, ed.) pp. 252–325. London: Elsevier Applied Science.Google Scholar
  11. Green, R.H. (1979) Sampling Design and Statistical Methods for Environmental Biologists. Chichester: Wiley.Google Scholar
  12. Greenslade, P. (1964) Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). J. Animal Ecol. 33, 301–10.Google Scholar
  13. Haila, Y. (1992) Measuring nature: quantitative data in field biology. In The Right Tools for the Job. At Work in Twentieth-century Life Sciences (A.E. Clarke and J.H. Fujimura, eds) pp. 233–53. Princeton, N J: Princeton University Press.Google Scholar
  14. Haila, Y. (1994) Preserving ecological diversity in boreal forests: ecological background, research, and management. Ann. Zool. Fenn. 31, 203–17.Google Scholar
  15. Haila, Y. and Levins, R. (1992) Humanity and Nature. Ecology, Science and Society London: Pluto Press.Google Scholar
  16. Haila, Y., Hanski, I.K., Niemelä, J., Punttila, P., Raivio, S. and Tukia, H. (1994) Forestry and the boreal fauna: matching management with natural forest dynamics. Ann. Zool. Fennici 31, 187–202.Google Scholar
  17. Hansen, V. (1950) Biller XIII. Clavicornia 1 del. Danmarks Fauna 55. (In Danish.)Google Scholar
  18. Hansen, V. (1951) Biller XIV. Clavicornia 2 del. Danmarks Fauna 56. (In Danish.)Google Scholar
  19. Heliövaara, K. and Väisänen, R. (1984) Effects of modern forestry on northwestern European forest invertebrates: a synthesis. Acta Forestalia Fennica 189, 1–32.Google Scholar
  20. Kaila, L. (1993) A new method for collecting quantitative samples of insects associated with decaying wood or wood fungi. Entomol. Fennica 4, 21–3.Google Scholar
  21. Kaila, L., Martikainen, P., Punttila, P. and Yakovlev, E. (1994) Saproxylic beetles (Coleoptera) on dead birch trunks decayed by different polypores. Ann. Zool. Fennici 31, 97–107.Google Scholar
  22. Kuuluvanien, T. (1994) Gap disturbance, ground microtopography, and the regeneration dynamics of boreal coniferous forests in Finland: a review. Ann. Zool. Fennici 31, 35–51.Google Scholar
  23. McNeely, J.A. (1994) Lessons from the past: forests and biodiversity. Biodiv. Conserv. 3, 3–20.Google Scholar
  24. Margules, C.R. and Austin, M.P. (eds) (1991) Nature Conservation: Cost Effective Biological Surveys and Data Analysis. East Melbourne, Victoria: CSIRO.Google Scholar
  25. Nuorteva, M. (1968) Über Mengenveränderungen der Borkenkäferfauna in einem südfinnischen Waldgebiet in der Zeit von 1953 bis 1964. Acta Entomol. Fennica 24, 1–50.Google Scholar
  26. Palm, T. (1951) Die Holz-und Rinden-käfer der Nord-schwedischen Laubbäume. Meddel. Statens Skogsforskningsinstitut 40: 2.Google Scholar
  27. Palm, T. (1959) Die Holz-und Rinden-käfer der Süd-und Mittelschwedischen Laubbäume. Opuscula Entomol. Suppl. 16, 1–374.Google Scholar
  28. Rassi, P. (ed.) (1993) Frequency score of Coleoptera in Finland 1.1.1960–1.1.1990. Helsinki: WWF.Google Scholar
  29. Rassi, P., Kaipiainen, H., Mannerkoski, I. and Ståhls, G. (1992) Uhanalaisten eläinten ja kasvien seurantatoimikunnan mietintö (Report on the monitoring of threatened animals and plants in Finland). Ministry of the Environment. Helsinki: Finnish Government Printing Centre. (In Finnish.)Google Scholar
  30. Saalas, U. (1917) Die Fichtenkäfer Finnlands I. Ann. Acad. Sci. Fennicae A VIII.Google Scholar
  31. Saalas, U. (1923) Die Fichtenkäfer Finnlands II. Ann. Acad. Sci. Fennicae A XXII.Google Scholar
  32. Saalas, U. (1949) Suomen metsähyönteiset. [Finnish forest insects] (in Finnish). Suomen tiedettä 5. Suomalainen tiedeakatemia. Helsinki: WSOY.Google Scholar
  33. Siitonen, J. (1994) Decaying wood and saproxylic Coleoptera in two old spruce forests: a comparison based on two sampling methods. Ann. Zool. Fennici 31, 89–95.Google Scholar
  34. Siitonen, J. and Martikainen, P. (1994) Occurrence of rare and threatened insects living on decaying Populus tremula: A comparison between Finnish and Russian Karelia. Scand. J. For. Res. 9, 185–91.Google Scholar
  35. Silfverberg, H. (1992) Enumeratio Coleopterorum Fennoscandiae, Dania et Baltiae. Helsinki: Helsingin Hyönteisvaihtoyhdistys.Google Scholar
  36. Simberloff, D.S. (1978) Use of rarefaction and related methods in ecology. In Biological data in Water Pollution Assessment: Quantitative and Statistical Analyses (K.L. Dickson, J. Cairns Jr. and R.J. Livingston (eds), STP 652, pp. 150–65. American Society for Testing Materials.Google Scholar
  37. Sirén, G. (1955) The development of spruce forest on raw humus site in northern Finland and its ecology. Acta Forest. Fennica 62, 1–362.Google Scholar
  38. Speight, M.C.D. (1989) Saproxylic Invertebrates and their Conservation. Strasbourg: Council of Europe.Google Scholar
  39. Syrjänen, K., Kalliola, R., Puolasmaa, A. and Mattson, J. (1994) Landscape structure and forest dynamics in subcontinental Russian European taiga. Ann. Zool. Fennici 31, 19–34.Google Scholar
  40. Ter Braak, C.J.F. (1987) CANOCO-A FORTRAN program for canonical community ordination by partial detrended canonical correspondence analysis, principal component analysis and redundancy analysis. Wageningen, The Netherlands: TNO Institute of Applied Computer Science.Google Scholar
  41. Thunes, K.H. (1994) The coleopteran fauna of Piptoporus betulinus and Fomes fomentarius (Aphyllophorales: Polyporaceae) in western Norway. Entomol. Fennica 5, 157–68.Google Scholar
  42. Virkkala, R., Heinonen, M. and Routasuo, P. (1993) Population contraction of the white-backed woodpecker Dendrocopos leucotos in Finland as a consequence of habitat alteration. Biol. Conserv. 66, 47–53.Google Scholar
  43. Väisänen, R., Biström, O. and Heliövaara, K. (1993) Subcortical Coleoptera in dead pines and spruces: is primeval species composition maintained in managed forests? Biodiv. Conserv. 2, 95–113.Google Scholar
  44. Wikars, L.-O. (1992) Forest fire and insects. Entomologisk Tidskrift 113, 1–11.Google Scholar
  45. Zackrisson, O. (1977) Influence of forest fires on the North Swedish boreal forest. Oikos 29, 22–32.Google Scholar
  46. Zar, J.H. (1984) Biostatistical Analysis, 2nd edn. Englewood Cliffs, N J: Prentice-Hall.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Lauri Kaila
    • 1
  • Petri Martikainen
    • 2
  • Pekka Punttila
    • 2
  1. 1.Finnish Museum of Natural History, Zoological MuseumUniversity of HelsinkiFinland
  2. 2.Department of Ecology and Systematics, Division of Population BiologyUniversity of HelsinkiFinland

Personalised recommendations