Advertisement

Journal of Sol-Gel Science and Technology

, Volume 8, Issue 1–3, pp 689–696 | Cite as

Electrochromism in Materials Prepared by the Sol-Gel Process

  • Michel A. Aegerter
  • Cesar O. Avellaneda
  • Agniezska Pawlicka
  • Mohamed Atik
Article

Abstract

Electrochromism is defined as the persistent but reversible optical change (usually transmission) produced electrochemically. The preparation by the sol-gel process of thin films made of amorphous or crystalline nanoparticles of WO3, V2O5, Nb2O5, TiO2, CeO2, Fe2O3 and mixed compounds such as WO3-TiO2, CeO2-TiO2, CeO2-SnO2, have opened remarkable new opportunities for obtaining electrochromic layers exhibiting large optical transmission variation in the UV, visible or infrared range and acceptable kinetics under H+ or Li+ insertion. In this paper we give an overview of what has been recently achieved in this field, with emphasis for cathodic electrochromic coatings of Nb2O5 and TiO2 composition. Finally we stress the future developments in this fast growing field.

electrochromism coating nanoparticle sol-gel material WO3 Nb2O5 TiO2 CeO2 Fe2O3 mixed compound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.M. Lampert and C.G. Grandqvist, in Large-Area Chromogenics: Materials and Devices for Transmittance Control, edited by SPIE IS4 (SPIE, Bellingham, Washington, USA, 1990), p. 2.Google Scholar
  2. 2.
    N.R. Lynam and A. Agrawal, in Large-Area Chromogenics: Materials and Devices for Transmittance Control, edited by SPIE IS4 (SPIE, Bellingham, Washington, USA, 1990), p. 46.Google Scholar
  3. 3.
    J.P. Cronin and A. Agrawal, in Perspectives on Glass Science and Technology, Symposium in Honor of the 90th Birthday of Prof. N. Kreidl, Triesenberg, Liechtenstein (to be published).Google Scholar
  4. 4.
    S.E. Selkowitz and C.M. Lampert, in Large-Area Chromogenics: Materials and Devices for Transmittance Control, edited by SPIE IS4, 22 (Optical Engineering Press, Bellingham, Washington, USA, 1990).Google Scholar
  5. 5.
    S.C. Selkowitz, M. Rubin, E.S. Lee, and R. Sullivan, in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII (SPIE, Bellingham, Washington, USA, 1994), vol. SPIE 2255, p. 226.Google Scholar
  6. 6.
    T. Kraus, unpublished report (Balzers, Liechtenstein, 1953).Google Scholar
  7. 7.
    S.K. Deb, Appl. Opt. Suppl. 3, 192 (1969).Google Scholar
  8. 8.
    S.K. Deb, Phil. Mag. 27, 801 (1973).Google Scholar
  9. 9.
    O. Inganäs, in Large-Area Chromogenics: Materials and Devices for Transmittance Control, edited by SPIE IS4 (SPIE, Bellingham, Washington, USA, 1990), p. 328.Google Scholar
  10. 10.
    S.C. Yang, in Large-Area Chromogenics: Materials and Devices for Transmittance Control, edited by SPIE IS4 (SPIE, Bellingham, Washington, USA, 1990), p. 335.Google Scholar
  11. 11.
    C.J. Brinker and G.W. Scherer, in Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990), p. 787.Google Scholar
  12. 12.
    L.C. Klein, Sol-Gel Technology for Thin Films, Fibers, Pre-forms, Electronics and Specialty Forms (Noyes Publications, New Jersey, USA, 1988), p. 407.Google Scholar
  13. 13.
    M.A. Aegerter, M. Jafelicci, Jr., D.F. Souza, and E.D. Zanotto, Sol-Gel Science and Technology (World Scientific Singapore, 1989), p. 505.Google Scholar
  14. 14.
    S. Sakka and T. Yoko, in Chemistry, Spectroscopy and Applications of Sol-Gel Glasses (Springer-Verlag, Berlin, 1992), p. 89.Google Scholar
  15. 15.
    H. Schmidt, in Chemistry, Spectroscopy and Applications of Sol-Gel Glasses (Springer-Verlag, Berlin, 1992), p. 119.Google Scholar
  16. 16.
    J.P. Cronin, D.J. Tarico, J.C.C. Tonazzi, A. Agrawal, and S.R. Kennedy, in Sol-Gel Optics II (SPIE, Bellingham, Washington, USA, 1992), vol. SPIE 1758, p. 343.Google Scholar
  17. 17.
    J.P. Cronin, D.J. Tarico, J.C.C. Tonazzi, A. Agrawal, and S.R. Kennedy, Solar Energy Materials and Solar Cells 29, 371 (1993).Google Scholar
  18. 18.
    A. Chemseddine, R. Morineau, and J. Livage, Solid State Ionics 910, 357 (1983).Google Scholar
  19. 19.
    G. Xu and L. Chen, Solid State Ionics 2830, 1726 (1988).Google Scholar
  20. 20.
    P. Judeinstein and J. Livage, Materials Science and Engineering 133, 129 (1989).Google Scholar
  21. 21.
    K. Yamamaka, Jpn. J. Applied Physics 20, 1307 (1981).Google Scholar
  22. 22.
    J. Oi, A. Kishimoto, and T. Kudo, J. Solid State Chemistry 96, 13 (1992).Google Scholar
  23. 23.
    K. Yamanaka, H. Ohkawoto, H. Kidon, and T. Kudo, Jpn. J. Applied Physics 25, 1420 (1986).Google Scholar
  24. 24.
    K. Itoh, T. Okamoto, S. Wakita, H. Niikura, and M. Murabayashi, Appl. Organomet. Chem. 5, 295 (1991).Google Scholar
  25. 25.
    H. Unuma, K. Tonooka, Y. Suzuki, T. Furusaki, K. Kodaira, and T. Matsushita, J. Mat. Lett. 5, 1248 (1986).Google Scholar
  26. 26.
    A. Takase and K. Miyakawa, Jpn. J. Appl. Phys. Part 2 30, L1508 (1991).Google Scholar
  27. 27.
    J.M. Bell, D.C. Green, A. Patterson, G.B. Smith, K.A. MacDonald, K. Lee, L.D. Kirkup, J.D. Cullen, B.O. West, L. Apoccia, M.J. Kenny, and L.S. Wilunski (SPIE, Bellingham, Washington, USA, 1991), vol. SPIE 1536, p. 29.Google Scholar
  28. 28.
    J. Livage, Solid State Ionics 50, 307 (1992).Google Scholar
  29. 29.
    P. Judeinstein and J. Livage, J. Mater. Chem. 1, 621 (1991).Google Scholar
  30. 30.
    D. Craigen, A. Mackintosh, J. Hickman, and K. Colbow, J. Electrochem. Soc. 133, 1529 (1986).Google Scholar
  31. 31.
    P. Judeinstein and J. Livage, in Sol-Gel Optics (SPIE, Bellingham, Washington, USA, 1990), vol. 1328, p. 344.Google Scholar
  32. 32.
    M. Denesuk, J.P. Cronin, S.R. Kennedy, K.J. Law, G.F. Nielson, and D.R. Uhlmann, in International Symposium on Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII (SPIE Bellingham, Washington, USA, 1994), vol. SPIE 2255, p. 52.Google Scholar
  33. 33.
    J. Göttsche, A. Hinsch, and P. Wittwer, Solar Energy Materials and Solar Cells 31, 415 (1993).Google Scholar
  34. 34.
    T. Yoshino, N. Baba, and K. Yasuda, Nippon Kagaku Kaishi 9, 1525 (1988).Google Scholar
  35. 35.
    B. Wang, J. Cheng, and W. Zhon, Huadong Huagong Xueynan Xuebao 18, 48 (1992).Google Scholar
  36. 36.
    F.H. Moser and N.R. Lynam, US Patent 4,855,161 (1989).Google Scholar
  37. 37.
    U.L. Stangar, B. Orel, I. Grabec, B. Ogoreve, and K. Kalcher, Solar Energy Materials and Solar Cells 31, 173 (1993).Google Scholar
  38. 38.
    Z.C. Orel and B. Orel, in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII (SPIE, Bellingham, Washington, USA, 1994), vol. SPIE 2255, p. 285.Google Scholar
  39. 39.
    M.A. Aegerter, E.R. LaSerra, A.C. Martins Rodrigues, G. Kordas, and G. Moore, in Sol-Gel Optics (SPIE, Bellingham, Washington, USA, 1990), vol. SPIE 1328, p. 391.Google Scholar
  40. 40.
    P. Baudry, A.C.M. Rodriguez, M.A. Aegerter, and L.O.S. Bulhões, J. Non Crystal. Solids 121, 319 (1990).Google Scholar
  41. 41.
    M.A. Macedo, L.H. Dall’Antonia, and M.A. Aegerter, in Sol-Gel Optics II (SPIE, Bellingham, Washington, USA, 1992), vol. SPIE 1758, p. 320.Google Scholar
  42. 42.
    J.C.L. Tonazzi, B. Valla, M.A. Macedo, P. Baudry, and M.A. Aegerter, in Sol Gel Optics (SPIE, Bellingham, Washington, USA, 1990), vol. SPIE 1328, p. 375.Google Scholar
  43. 43.
    M.A. Macedo, L.H. Dall’Antonia, B. Valla, and M.A. Aegerter, J. Non-Cryst. Solids 147/148, 792 (1992).Google Scholar
  44. 44.
    M.A. Macedo and M.A. Aegerter, J. Sol-Gel Science and Technology 2, 667 (1994).Google Scholar
  45. 45.
    B. Valla, J.C.L. Tonazzi, M.A. Macedo, L.H. Dall’Antonia, M.A. Aegerter, M.A.B. Leones, and L.O.S. Bulhões, in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X (SPIE, Bellingham, Washington, USA, 1991), vol. SPIE 1536.Google Scholar
  46. 46.
    D. Kéomani, C. Poinsignon, and D. Deroo, Solar Energy Material and Solar Cells, 36, 397 (1995).Google Scholar
  47. 47.
    M.A. Macedo, Ph.D. Thesis University of São Paulo (1994).Google Scholar
  48. 48.
    S. Doeuff and C. Sanchez, C.R. Acad. Sci. Ser. 2, 309, 351 (1989).Google Scholar
  49. 49.
    M. Nabavi, S. Doeuff, C. Sanchez, and J. Livage, Mater. Sci. Eng. B3, 203 (1989).Google Scholar
  50. 50.
    N. Ozer, D.G. Chen, and J.H. Simmons, Ceram. Trans. Glasses Electron. Appl. 20, 253 (1991).Google Scholar
  51. 51.
    N. Ozer, F. Tepehan, and N. Bozkurt, Thin Solid Films 219, 193 (1992).Google Scholar
  52. 52.
    J.M. Bell, J. Barczynska, L.A. Evans, K.A. MacDonald, J. Wang, D.C. Green, and G.B. Smith, in Optical Materials Technology for Energy Efficienty and Solar Energy Conversion XIII (SPIE, Bellingham, Whashington, USA, 1994), vol. SPIE 2255, p. 324.Google Scholar
  53. 53.
    A. Hagfeld, N. Vlachopoulos, S. Gilbert, and M. Grätzel, in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII (SPIE, Bellingham, Whashington, USA, 1994), vol. SPIE 2255, p. 297.Google Scholar
  54. 54.
    M. Nabavi, C. Sanchez, and J. Livage, Eur. J. Solid State Inorg. Chem. 28, 1173 (1991).Google Scholar
  55. 55.
    U.L. Stangar, B. Orel, and M.G. Hutchins, in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII (SPIE, Bellingham, Washington, USA, 261, 1994), vol. SPIE 2255.Google Scholar
  56. 56.
    B. Orel, U.L. Stangar, M.G. Hutchins, and K. Kalcher, J. Non Cryst. Solids 175, 251 (1994).Google Scholar
  57. 57.
    R.G. Lee and J.A. Crayston, J. Mater. Chem. 1, 381 (1991).Google Scholar
  58. 58.
    R.C. Faria and L.O.S. Bulhões, J. Electrochem. Soc. 141, L29, (1994).Google Scholar
  59. 59.
    C.O. Avellaneda, M.A. Macedo, and M.A. Aegerter, in Proc.38o. Congresso Brasileiro de Cerâmica (Blumenau, SC, 1994), p. 109.Google Scholar
  60. 60.
    N. Ozer, R. Barreto, T. Büyüklinanl, and C. Lampert, Solar Energy Materials and Solar Cells 36, 433 (1995).Google Scholar
  61. 61.
    M.A. Aegerter, Patent pending No WO 91/02282 (PCT/ BR90/00006) (1991).Google Scholar
  62. 62.
    C.O. Avellaneda, M.A. Macedo, A.O. Florentino, D.A. Barros Filho, A.A. Rabelo, and M.A. Aegerter, in Proceedings 2nd Conference “Sociedade Brasileira de Pesquisadores Nikkeis” (São Paulo, V.II, 17, 1994).Google Scholar
  63. 63.
    M.A. Aegerter and C.O. Avellaneda, in International Symposium on Sol-Gel Science and Technology, ACERS Pacific Coast Meeting (Los Angeles, USA) (to be published).Google Scholar
  64. 64.
    C.O. Avellaneda, M.A. Macedo, A.O. Florentino, D.A. Barros Filho, and M.A. Aegerter, in Sol Gel Optics III (Bellingham, Washington, USA, 1994), vol. SPIE 2288, p. 422.Google Scholar
  65. 65.
    C.O. Avellaneda, M.A. Macedo, A.O. Florentino, and M.A. Aegerter, in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII (SPIE, Bellingham, Washington, USA), vol. SPIE 2255, p. 38.Google Scholar
  66. 66.
    A. Pawlicka, M. Atik, and M.A. Aegerter, J. Mat. Sci. Lett. (accepted for publication) and J. Electrochem. Soc. (submitted).Google Scholar
  67. 67.
    B. Ohtani, K. Iwai, S. Nishimoto, and T. Inui, J. Electrochem. Soc. 141, 2439 (1994).Google Scholar
  68. 68.
    F.H. Moser, and N.R. LynamR, U.S. Patent, 4, 959, 247 (1990).Google Scholar
  69. 69.
    B. Orel, M. Macek, F. Svege, and K. Kalcher Thin Solid Films 246, 131 (1994).Google Scholar
  70. 70.
    B. Orel, M. Macek, and A. Surca, in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII (SPIE, Bellingham, Washington, USA, 1994), vol. SPIE 2255, p. 273.Google Scholar
  71. 71.
    C. Sanchez, Bol. Soc. Esp. Ceram. Vidrio 31, 191 (1992).Google Scholar
  72. 72.
    T. Yoshino, N. Baba, and Y. Kouda, Jpn. J. Appl. Phys. 26, 782 (1987).Google Scholar
  73. 73.
    J. Desilvestro and O. Haas, J. Electrochem. Soc. 137, 50 (1990).Google Scholar
  74. 74.
    S.F. Cogan, R.D. Rauh, T.D. Plante, N.M. Nguyen, and J.D. Westwood, in Physical Electrochemistry Division, The Electrochemical Society Electrochromic Materials (Pennington, New Jersey, 1980), p. 99.Google Scholar
  75. 75.
    S. Bach, J.P. Pereira-Ramos, N. Baffier, and R. Messina, J. Electrochem. Soc. 137, 1042 (1990).Google Scholar
  76. 76.
    J.P. Pereira-Ramos, R. Messina, S. Bach, and N. Baffier, Solid State Ionics 4041, 970 (1990).Google Scholar
  77. 77.
    J.-M. Amarilla, B. Casal, J.-C. Galvan, and E. Ruiz-Hitzky, Chem. Mater. 4, 62 (1992).Google Scholar
  78. 78.
    K. Nagase, Y. Shimizu, N. Miura, and N. Yamazoe, J. Ceram. Soc. Jpn. 101, 1032 (1993).Google Scholar
  79. 79.
    M.A. Aegerter, Sol-gel Chromogenic Materials and Devices, in Structure and Bonding: Optical and Electronic Phenomena in Sol-Gel Glasses and Modern Applications, edited by R. Reisfeld and C. Jorgensen (Springer Verlag), (accepted for publication).Google Scholar
  80. 80.
    A. Agrawal, J.P. Cronin, and R. Zhang, Sol. Energy Mater. Sol. Cells 31, 9 (1993).Google Scholar
  81. 81.
    P. Olivi, E.C. Pereira, E. Longo, J.A. Varella, and L.O. Bulhões, J. Electrochem. Soc. 140, L81 (1993).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Michel A. Aegerter
  • Cesar O. Avellaneda
  • Agniezska Pawlicka
  • Mohamed Atik

There are no affiliations available

Personalised recommendations