Journal of Sol-Gel Science and Technology

, Volume 10, Issue 2, pp 127–137 | Cite as

Effect of Aging on Nonhydrolytic Alumina Xerogels

  • G.S. Grader
  • Y. de Hazan
  • D. Bravo-Zhivotovskii
  • G.E. Shter
Article

Abstract

Nonhydrolytic sol-gel route is a relatively recent process which enables production of complex, multicomponent oxide materials. This process has some advantages over the conventional hydrolytic sol-gel route due to the ability to produce low-shrinkage, homogeneous, multicomponent gels. The objective of this work was to determine the effects of aging of nonhydrolytic gels on the composition, yield, phase transformations and morphology. Xerogels were prepared from aluminum chloride and isopropyl ether. Properties were studied using AgNO3 titrations, TGA/DTA, XRD, and BET analysis. We have found that the gels contain significant amount of chlorine where the Cl/Al atomic ratio ranges from 1.1–0.6 depending on the aging time. The crystallization temperature and enthalpy of crystallization decreased with aging time. The decrease of the surface area near the crystallization temperature correlates well with the decrease of the enthalpy of crystallization as a function of aging time. A closed pore phenomenon has been observed in the nonhydrolytic alumina system. Finally, analysis of the condensation degree (CD) yielding Al–O–Al bonds suggests that the rate determining step before the gel point is the alkoxy groups formation. However, during aging of the gels, the CD remains constant since the condensation of chloride with isopropoxy groups is stericly inhibited. Surface areas in the 300–650 m2/g range were obtained depending on the aging time.

aging nonhydrolytic alumina xerogels TGA DTA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science (Academic Press, New York, 1990).Google Scholar
  2. 2.
    R.J.P. Corriu, D. Leclercq, P. Lefevre, P.H. Mutin, and A. Vioux, J. Non-Cryst. Solids 146, 301 (1992).Google Scholar
  3. 3.
    R.J.P. Corriu, D. Leclercq, P. Lefevre, P.H. Mutin, and A. Vioux, J. Mater. Chem. 2, 673 (1992).Google Scholar
  4. 4.
    R. Corriu, D. Leclercq, P. Lefevre, P.H. Mutin, and A. Vioux, Chem. Mat. 4, 961 (1992).Google Scholar
  5. 5.
    S. Acosta, R.J.P. Corriu, D. Leclercq, P. Lefevre, P.H. Mutin, and A. Vioux, J. Non-Cryst. Solids 170, 234 (1994).Google Scholar
  6. 6.
    S. Acosta, P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, in Better Ceramics through Chemistry VI, Mater. Res. Soc. Symp. Proc. 346, 43 (1994).Google Scholar
  7. 7.
    P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, in Better Ceramics through Chemistry VI, Mat. Res. Soc. Symp. Proc. 346, 339 (1994).Google Scholar
  8. 8.
    S. Acosta, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, in Better Ceramics through Chemistry VI, Mat. Res. Soc. Symp. Proc. 346, 345 (1994).Google Scholar
  9. 9.
    A. Vioux and D. Leclercq, Heterogeneous-Chemistry Reviews, 3, 65 (1996).Google Scholar
  10. 10.
    R.J.P. Corriu and D. Leclercq, Angew. Chem. Int. Ed. Engl. 35, 1420 (1996).Google Scholar
  11. 11.
    G.S. Grader, Y. de Hazan, Y. Cohen, and D. Bravo-Zhivotovskii, J. Sol-Gel. Tech. 1996, 10, 5 (1997).Google Scholar
  12. 12.
    R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979).Google Scholar
  13. 13.
    L.T. Zhuravlev, Langmuir 3, 316 (1987).Google Scholar
  14. 14.
    W.WM. Wendland, Thermal Methods of Analysis (Wiley, New York, 1974)Google Scholar
  15. 15.
    J.M. Fletcher and C.J. Hardy, Chem. and Ind. 18, 48 (1968).Google Scholar
  16. 16.
    J.L. Woodhead, Sci. Ceram. 9, 29 (1977).Google Scholar
  17. 17.
    J.L. Mcardle and G.L. Messing, J. Adv. Ceram. Mater. 3, 387 (1988).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • G.S. Grader
  • Y. de Hazan
  • D. Bravo-Zhivotovskii
  • G.E. Shter

There are no affiliations available

Personalised recommendations