Euphytica

, Volume 101, Issue 2, pp 199–206

Molecular characterization and genetic relatedness among walnut (Juglans regia L.) genotypes based on RAPD markers

  • F.P. Nicese
  • J.I. Hormaza
  • G.H. McGranahan
Article

Abstract

The potential use of the Randomly Amplified Polymorphic DNA (RAPD) technique for characterization and assessment of genetic relationships was investigated in nineteen walnut (Juglans regia L.) genotypes used as parents or released as cultivars from the breeding program of the University of California at Davis. Most of the 72 decamer primers used yielded scorable amplification patterns based on discernable bands. The results obtained produced a unique fingerprint for each of the walnut genotypes studied. Cluster analysis separated the 19 walnut genotypes into two main groups whose differences were related to their pedigree. Genotypes sharing common parents tend to group together and with at least one of the parents. Thus, RAPD markers can detect enough polymorphism to differentiate among walnut genotypes, even among closely related genotypes, and the genetic similarity based on RAPDs appears to reflect the known pedigree information. RAPD technology can be useful in current walnut breeding programs, allowing the identification of new cultivars as well as the assessment of the genetic similarity among genotypes which will help in selecting the best parents to obtain new genetic combinations.

cultivar identification fingerprinting genetic similarity Juglans regia RAPD walnut 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleta, N., C. Olarte, M.J. Truco & P. Arus, 1989. Identification of walnut cultivars by isozyme analysis. Acta Horticulturae 284: 91-96.Google Scholar
  2. Aleta, N., M. Rovira, A. Ninot & P. Arus, 1993. Inheritance of four isozymes in walnut. Acta Horticulturae 311: 62-65.Google Scholar
  3. Aly, A.M.M., R.G. Fjellstrom, G.H. McGranahan & D.E. Parfitt, 1992. Origin of walnut somatic embryos determined by RFLP and isozyme analysis. HortScience 27: 61-63.Google Scholar
  4. Arulsekar, S., D.E. Parfitt & G.H. McGranahan, 1985. Isozyme gene markers in Juglansspecies. J Heredity 76: 103-106.Google Scholar
  5. Arulsekar, S., G.H. McGranahan & D.E. Parfitt, 1986. Inheritance of phospho-glucomutase and esterase isozymes in Persian walnut. J Heredity 77: 220-221.Google Scholar
  6. Aruna, M., P. Ozias-Akins & M.E. Austin, 1993. Genetic relatedness among rabbiteye blueberry (Vaccinium ashei) cultivars determined by DNA amplification using single primers of arbitrary sequence. Genome 36: 971-977.PubMedGoogle Scholar
  7. Ayliffe, M.A., G.J. Lawrence, J.G. Ellis & A.J. Pryor, 1994. Heteroduplex molecules formed between allelic sequences cause nonparetnal RAPD bands. Nucl Acids Res 22(9): 1632-1636.PubMedGoogle Scholar
  8. Bachmann, K., 1994. Molecular markers in plant ecology. The New Phytologist 126: 403-418.CrossRefGoogle Scholar
  9. Doyle, J.J.& J.L. Doyle, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11-15.Google Scholar
  10. Dudley, J.W., 1994. Comparison of genetic distance estimators using molecular marker data. Analysis of molecular marker data. Joint plant breeding Symposia series. Am Soc Hort Sci Crop Sci Soc USA, pp. 3-7.Google Scholar
  11. Dunemann, F., R. Kahnau & H. Schmidt, 1994. Genetic relationships in Malusevaluated by RAPD fingerprinting of cultivars and wild species. Plant Breed 113(2): 150-159.CrossRefGoogle Scholar
  12. Dweikat, I., S. Mackenzie, L. Morris & H. Ohm, 1993. Pedigree assessment using RAPD-DGGE in cereal crop species. Theor Appl Genet 85: 497-505.CrossRefGoogle Scholar
  13. Fabbri, A., J.I. Hormaza & V.S. Polito, 1995. Random amplified polymorphic DNA analysis of olive (Olea europaeaL.) cultivars. J Am Soc Hort Sci 120(3): 538-542.Google Scholar
  14. Falconer, D.S., 1989. Introduction to Quantitative Genetics. 3rd. ed. Longman, London.Google Scholar
  15. Fjellstrom, R.G. & D.E. Parfitt, 1994a. RFLP inheritance and linkage in walnut. Theor Appl Genet 89(6): 665-670.CrossRefGoogle Scholar
  16. Fjellstrom, R.G. & D.E. Parfitt, 1994b. Walnut (Juglansspp.) genetic diversity determined by restriction fragment length polymorphisms. Genome 37(4): 690-700.PubMedGoogle Scholar
  17. Fjellstrom, R.G. & D.E. Parfitt, 1995. Phylogenetic analysis and evolution of the genus Juglans(Juglandaceae) as determined from nuclear genome RFLPs. Plant Syst Evol 197(1-4): 19-32.CrossRefGoogle Scholar
  18. Fjellstrom, R.G., D.E. Parfitt & G.H. McGranahan, 1994. Genetic relationship and characterization of Persian walnut (Juglans regiaL.) cultivars using restriction fragment length polymorphism (RFLPs). J Am Soc Hort Sci 119(4): 833-839.Google Scholar
  19. Forde, H.I. & G.H. McGranahan, 1996. Walnuts. In: J. Janick & J.N. Moore (Eds.), Fruit Breeding, Vol III. Nuts, pp. 241-273. John Wiley & Sons, New York.Google Scholar
  20. Germain, E., I. Hanquier & R. Monet, 1993. Identification of eight Juglansspp. and their interspecific hybrids by isoenzymatic electrophoresis. Acta Horticulturae 311: 73-81.Google Scholar
  21. Hallden, C., N.O. Nilsson, I.M. Rading & T. Sall, 1994. Evaluation of RFLP and RAPD markers in a comparison of Brassica napusbreeding lines. Theor Appl Genet 88(1): 123-128.Google Scholar
  22. Hormaza, J.I., L. Dollo & V.S. Polito, 1994. Determination of relatedness and geographicalmovement of Pistacia veraL. (pistachio; Anacardiaceae) germplasm by RAPD analysis. Econ Bot 48(4): 349-358.Google Scholar
  23. Hunt, G.J. & R.E. Page, 1992. Patterns of inheritance with RAPD molecular markers reveal novel types of polymorphism in the honey bee. Theor Appl Genet 85(1): 15-20.CrossRefGoogle Scholar
  24. Lamboy, W.F., 1994. Computing genetic similarity coefficients from RAPD data: the effects of PCR artifacts. PCR Methods Appl 4: 31-37.PubMedGoogle Scholar
  25. Louskas, M., K. Pontikis, I. Vergini & K. Papalexandras, 1984. Identification ofwalnut and filbert cultivars by isoenzymatic electrophoresis. Acta Horticulturae 311: 73-81.Google Scholar
  26. Molvolti, M.E., M. Pigliucci, F. Cannata & S. Fineschi, 1993. Genetic variation in Italian populations of Juglans regia. Acta Horticulturae 311: 86-91.Google Scholar
  27. Malvolti, M.E., S. Fineschi & M. Pigliucci, 1994. Morphological integration and genetic variability in Juglans regiaL. J Heredity 85: 389-394.Google Scholar
  28. McGranahan, G.H. & C. Leslie, 1990. Walnuts (Juglans). Acta Horticulturae 290: 905-951.Google Scholar
  29. McGranahan, G.H., W. Tulecke, S. Arulsekar & J.J. Hansen, 1986. Intergeneric hybridization in the Juglandaceae: Pterocaryaspp.×Juglans regia. J Am Soc Hort Sci 111(4): 627-630.Google Scholar
  30. Nei, M. & W.H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 5269-5273.PubMedCrossRefGoogle Scholar
  31. Newbury, H.J. & B.V. Ford-Lloyd, 1993. The use of RAPD for assessing variation in plants. Plant Growth Regulation 12: 43- 51.CrossRefGoogle Scholar
  32. Pooler, M.R. & R. Scorza, 1995. Aberrant transmission of RAPD markers in haploids, doubled haploids, and F1 hybrids of peach: observations and speculations on causes. Scientia Horticulturae 64: 233-241.CrossRefGoogle Scholar
  33. Riedy, M.F., W.J. Hamilton & C.F. Aquadro, 1992. Excess of non-parental bands in offspring from known primate pedigress assayed using RAPD PCR. Nucl Acids Res 20(4): 918.PubMedGoogle Scholar
  34. Rieseberg, L.H., 1996. Homology among RAPD fragments in interspecific comparisons. Mol Ecol 5: 99-105.Google Scholar
  35. Rink, G., G. Zhang, Z. Jinghua, F.H. Kung & E.R. Carroll, 1994. Mating parameters in Juglans nigraL. seed orchard similar to natural population estimates. Silvae Genetica 43(4): 261-263.Google Scholar
  36. Serr, E.F., 1969. Persian walnuts in the western states. In: R.A. Jaynes (Ed.), Handboof of North American Nut Trees, pp. 240- 263. W.F. Humphry Press Inc., Geneva, New York.Google Scholar
  37. Solar, A., J. Smole & F. Stampar, 1993. Identification of walnut cultivars by pollen isozymes. Acta Horticulturae 311: 95-99.Google Scholar
  38. Solar, A., J. Smole, F. Stampar & M. Virscekmarn, 1994. Characterization of isozyme variation in walnut (Juglans regiaL.). Euphytica 77(1-2): 105-112.Google Scholar
  39. Tulecke, W. & G.H. McGranahan, 1994. The walnut germplasm collection at the University of California, Davis; a description of the collections and a history of the breeding program of Eugene F. Serr and H.I. Forde. Genetic Resources Conservation Program, University of California, Davis, Rpt. 13.Google Scholar
  40. Warburton, M.L. & F.A. Bliss, 1996. Genetic diversity in peach (Prunus persicaL. Batch) revealed by randomly amplified polymorphic DNA( RAPD)markers and compared to inbreeding coefficients. J Am Soc Hort Sci 121(6): 1012-1019.Google Scholar
  41. Weising, K., H. Nybom, K. Wolff & W. Meyer, 1995. DNA fingerprinting in plants and fungi. CRC Press Inc., Boca Raton, Florida.Google Scholar
  42. Wenheng, C.S.Y., 1984. Taxonomic studies of ten species of the genus Juglansbased on isozymic zymograms. Acta Hort Sinica 14(2): 90-96.Google Scholar
  43. Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucl Acid Res 18: 6531-6535.Google Scholar
  44. Williams, J.G.K., M.K. Hanafey, J.A. Rafalski & S.V. Tingey, 1993. Genetic analysis using Random Amplified Polymorphic DNA markers. Methods Enzymol 218: 704-740.PubMedCrossRefGoogle Scholar
  45. Woeste, K., G.H. McGranahan & R. Bernatzky, 1996a. Randomly amplified polymorphic DNA loci from a walnut backcross [(Juglans hindsii× J. regia) ×J. regia]. J Am Soc Hort Sci 121: 358-361.Google Scholar
  46. Woeste, K., G.H. McGranahan & R. Bernatzky, 1996b. The identification and characterization of a genetic marker linked to hypersensitivity to the cherry leafroll virus in walnut. Mol Breed 2(3): 261-266.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • F.P. Nicese
    • 1
  • J.I. Hormaza
    • 2
  • G.H. McGranahan
    • 3
  1. 1.Dipartimento di OrtoflorofrutticolturaFirenzeItaly
  2. 2.SIA-DGA, Campus de Aula DeiUnidad de FruticulturaZaragozaSpain
  3. 3.Department of PomologyUniversity of CaliforniaDavisU.S.A

Personalised recommendations