Biodiversity & Conservation

, Volume 6, Issue 4, pp 591–613 | Cite as

Plant species diversity and polyploidy in islands of natural vegetation isolated in extensive cultivated lands

  • Roselyne Lumaret
  • Jean-Louis Guillerm
  • Jacques Maillet
  • Regine Verlaque


Natural polyploidy is often related to a longer life span, vegetative reproduction and higher competitive ability. In this paper, we test the possibility that these characteristics may favour the survival of polyploid taxa under conditions of long-term habitat fragmentation. In islands of natural vegetation isolated in extensive vineyards located in the South of France and in a large neighbouring area of natural vegetation, plant species richness and the relative abundance of polyploid taxa were assessed according to island size, isolation and vegetation structure. High species richness was observed, with numerous species restricted to the islands, suggesting that these may constitute refugia. However, species richness was not related to island size or to degree of isolation except for the flora of the woody areas. A very positive effect of area fragmentation on plant richness was observed, which is probably attributable to relatively low species overlap among the islands. Particularly high species richness was observed in open areas, provided that these were not extensively colonized by shrubs which seem to be responsible for local extinction of many annual taxa. Polyploids, which comprised mostly perennial herbs and woody species, were predominant in all the islands and in the large reference area. In open habitats invaded by shrubby species, a higher relative frequency of polyploids was observed in islands than in the reference area. Moreover, polyploid taxa were present in a larger number of islands than the diploid taxa, which were often restricted to a single island, suggesting that, after a long period of isolation, the polyploids may still have a lower probability of extinction. Evidence was obtained from vegetation structure analysis that diploid and polyploid annual herbs were restricted to open habitats and were both eliminated by shrubby species. Conversely, the diploid perennial herbs were also significantly affected by shrub colonization whereas the polyploids were mostly present in shrubby areas. This suggests that the higher competitive ability of polyploid perennial herbs may constitute a critical factor responsible for their wider distribution over the islands. We report the implications of our findings on conservation strategies, more particularly for a Mediterranean flora.

long-term habitat fragmentation species richness polyploidy Mediterranean flora 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, I. (1983) The meaning of Z in species/area regression and the study of species turnover in island biogeography. Oikos 41, 385–90.Google Scholar
  2. Anonymous (1989) Version 3.7. — Groupe de Biométrie. Montpellier: Centre d'Ecologie Fonctionnelle et Evolutive CNRS.Google Scholar
  3. Barbault, R. (1992) Ecologie des peuplements, structure, dynamique et évolution. Paris: Masson.Google Scholar
  4. Bayer, R.J. and Stebbins, G.L. (1983) Distribution of sexual and apomictic populations of Antennaria parlanii. Evolution 37, 555–61.Google Scholar
  5. Bolkhovskikh, Z., Grif, V., Matrejeva, O. and Zakharyeva, T. (1969) Chromosome Numbers of Flowering Plants. Leningrad: Fedorov.Google Scholar
  6. Buckley, R.C. (1981) Scale dependant equilibrium on highly heterogeneous islands: plant geography of the northern Great Barrier Reef sand cays and single islets. Aust. J. Ecol. 6, 143–7.Google Scholar
  7. Case, T.J. and Cody M.L. (1983) Island Biogeography in the Sea of Cortez. Berkeley: University of California Press.Google Scholar
  8. Deleuil, G. (1948) Remarques sur l'absence de thérophytes dans les associations de Rosmarinetalia. Bull. Soc. Linn. de Provence 16, 1–12.Google Scholar
  9. DeWet, J.M. (1980) Origins of polyploids. In Polyploidy, Biological relevance (W.H. Lewis, ed.) pp. 3–15. New York: Plenum Press.Google Scholar
  10. Dzwonko, Z. (1993) Relations between the floristic composition of isolated young woods and their proximity to ancient woodland. J. Veg. Sci. 4, 693–8.Google Scholar
  11. Dzwonko, Z. and Loster, S. (1989) Distribution of vascular plant species in small woodlands on the Western Carpathian foothills. Oikos 56, 77–86.Google Scholar
  12. Emberger, L. (1955) Une classification biogéographique des climats. Rec. Trav. Lab. Bot. Geol. Univ. Montpellier, Ser. Bot. 7, 3–43.Google Scholar
  13. Fahmy, T.Y. (1951) Recherches caryologiques sur quelques espèces méditerranéennes. Thesis, Montpellier: University Montpellier II.Google Scholar
  14. Fournier, P. (1961) Les quatres flores de France. Paris: Lechevalier.Google Scholar
  15. Gadella, Th. and Kliphuis, E (1970) Chromosome studies in some flowering plants collected in the French Alps. Rev. Gén. Bot. 77, 487–97.Google Scholar
  16. Goldblatt, P. (1981) Index to plant chromosome numbers 1975–1978. Monogr. Syst. Bot. 5, 1–553.Google Scholar
  17. Goldblatt, P. (1984) Index to plant chromosome numbers 1979–1981. Monogr. Syst. Bot. 8, 1–447.Google Scholar
  18. Goldblatt, P. (1985) Index to plant chromosome numbers 1982–1983. Monogr. Syst. Bot. 13, 1–224.Google Scholar
  19. Goldblatt, P. (1988) Index to plant chromosome numbers 1984–1985. Monogr. Syst. Bot. 23, 1–264.Google Scholar
  20. Goldblatt, P. and Johnson, D.E. (1990) Index to plant chromosome numbers 1986–1987. Monogr. Syst. Bot. 30, 1–243.Google Scholar
  21. Goldblatt, P. and Johnson, D.E. (1991) Index to plant chromosome numbers 1988–1989. Monogr. Syst. Bot. 40, 1–238.Google Scholar
  22. Grant, V. (1963) The Origin of Adaptations. New York: Columbia University Press.Google Scholar
  23. Hill, M.O. (1974) Correspondence analysis: a neglected multivariate method. Appl. Stat. 23, 340–54.Google Scholar
  24. Hobbs, R.J. and Mooney, H.A. (1986) Community changes following shrub invasion of grassland. Oecologia 70, 508–13.Google Scholar
  25. Hodgson J.G. (1987) Why do so few plant species exploit productive habitats? An investigation into cytology, plant strategies and abundance within a local flora. Funct. Ecol. 1, 243–50.Google Scholar
  26. Kelsey, R.G., Stevenson, T.T., Scholl, J.P., Watson, T.J.Jr and Shafizadeh, F. (1978) The chemical composition of the litter and soil in a community of Artemisia tridentata Subsp. vaseyana. Biochem. Syst. Evol. 6, 193–200.Google Scholar
  27. Kliphuis, E. and Wieffering, J.H. (1972) Chromosome numbers of some Angiosperms from the South of France. Acta Bot. Neerl. 21, 598–604.Google Scholar
  28. Labadie, J.P. (1976) I.O.P.B. chromosome number reports. Taxon 25, 631–49.Google Scholar
  29. Lenthéric, C. (1989) Les villes mortes du golfe du lyon. Paris: De Bonnot, J. Press.Google Scholar
  30. Levin, D.A. (1983) Polyploidy and novelty in flowering plants. Am. Nat. 122, 1–15.Google Scholar
  31. Lumaret, R. (1988) Adaptative strategies and ploidy levels. Acta Oecol. Oecol. Plant. 9, 83–93.Google Scholar
  32. MacArthur, R.H. and Wilson, E.O. (1967) The Theory of Island Biogeography. New York, Princeton University Press.Google Scholar
  33. Maceira, N.O., Jacquard, P. and Lumaret, R. (1993) Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytol. 124, 321–8.Google Scholar
  34. Marshall, D.R. and Brown, A.D.H. (1981) The evolution of apomixis. Heredity 47, 1–15.Google Scholar
  35. Masterson, J. (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264, 421–4.Google Scholar
  36. Moore, R.J. (1973) Index to plant chromosome numbers: 1967–1971. Regnum Vegetabile 90, 1–539.Google Scholar
  37. Moore, R.J. (1974) Index to plant chromosome numbers: 1972. Regnum Vegetabile 91, 1–108.Google Scholar
  38. Moore, R.J. (1977) Index to plant chromosome numbers: 1973–1974. Regnum Vegetabile 96, 1–256.Google Scholar
  39. Muller, C.H., Muller, W.H. and Haines B.L. (1964) Volatile growth inhibitors produced by shrubs. Science 143, 471–3.Google Scholar
  40. Natarajan, G. (1977) Contribution à l'étude caryosystématique des espéces de la garrigue Languedocienne. Thesis Montpellier: University of Montpellier II.Google Scholar
  41. Natarajan, G. (1978) I.O.P.B. chromosome number reports. Taxon 27, 519–35.Google Scholar
  42. Natarajan, G. (1979a) I.O.P.B. chromosome number reports. Taxon 28, 629.Google Scholar
  43. Natarajan, G. (1979b) Etude caryosystématique de quelques monocotylédones de la garrigue Languedocienne. Nat. Monsp. Bot. 30, 7–27.Google Scholar
  44. Natarajan, G. (1981) I.O.P.B. chromosome number reports. Taxon 30, 698–9.Google Scholar
  45. Ouborg, N.J. (1993) Isolation, population size and extinction: the classical and metapopulation approaches applied to vascular plants along the Dutch Rhine-system. Oikos 66, 298–308.Google Scholar
  46. Quinn, J.F. and Harrison, S.P. (1988) Effects of habitat fragmentation and isolation on species richness: evidence from biogeographic patterns. Oecologia 75, 132–40.Google Scholar
  47. Quinn, J.F. and Hastings, A. (1987) Extinction in subdivided habitats. Cons. Biol. 1, 198–208.Google Scholar
  48. Rejmànek, M. and Rosén, E. (1992) Influence of colonizing shrubs on species-area relationships in alvar plant communities. J. Veget. Sci. 3, 625–30.Google Scholar
  49. Reynaud, C., Filosa D. and Verlaque R. (1993) Mediterranean chromosome number reports 2. Flora Medit. 3, 367–73.Google Scholar
  50. Rice, E.L. (1979) Allelopathy: an update. Bot. Rev. 45, 15–109.Google Scholar
  51. Riebesell, J.F. (1982) Arctic-alpine plants on mountain tops: agreement with island biogeographic theory. Am. Nat. 119, 657–79.Google Scholar
  52. Roose, M.L. and Gottlieb, L.D. (1976) Genetic and biochemical consequences of polyploidy in Tragopogon. Evolution 30, 818–30.Google Scholar
  53. Simberloff, D. and Abele, L.G. (1982) Refuge design and Island Biogeographical theory: effects of fragmentation. Am. Nat. 120, 41–50.Google Scholar
  54. Sokal, R.R. and Rohlf, J. (1981) Analysis of frequencies. In Biometry, the Principles and Practice of Statistics in Biological Research (R.R. Sokal and J. Rohlf, eds) pp. 691–778, 2nd edn. New York: Freeman and Co.Google Scholar
  55. Soltis, D.E. and Soltis, P.S. (1990) Isozyme evidence for ancient polyploidy in primitive angiosperms. Syst. Bot. 15, 328–37.Google Scholar
  56. Soltis, D.E. and Soltis, P.S. (1993) Molecular data and the dynamic nature of polyploidy. C.R.C. Critical Rev. Plant Sci. 12, 243–73.Google Scholar
  57. Stebbins, G.L. (1971) The morphological, physiological and cytogenetic significance of polyploidy. In Chromosomal Evolution in Higher Plants (G.L. Stebbins, ed.) pp. 124–54. London: Arnold.Google Scholar
  58. Stebbins, G.L. (1980) Polyploidy in plants: unsolved problems and prospects. In Polyploidy, Biological Relevance (W.H. Lewis, ed.) pp. 495–520. New York: Plenum Press.Google Scholar
  59. Tal, M. (1980) Physiology of polyploids. In: Polyploidy, Biological Relevance (W.H. Lewis, ed.) pp. 61–75. New York: Plenum Press.Google Scholar
  60. Tarayre, M., Thompson, J.D., Escarré, J. and Linhart, Y.B. (1995) Intra-specific variation in the inhibitory effects of Thymus vulgaris (Labiatae) monoterpenes on seed germination. Oecologia 101, 110–18.Google Scholar
  61. Thompson, J.D. and Lumaret, R. (1992) The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol. Evol. 7, 302–7.Google Scholar
  62. Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M. and Webb, D.A. (1964–1980), Flora Europaea. 5 vols. London: Cambridge University Press.Google Scholar
  63. Urbanska, K.M. (1986) Some life history strategies and population structure in asexually reproducing plants. Bot. Helv. 95, 81–97.Google Scholar
  64. van Loon J.C., Gadella Th. and Kliphuis, E. (1971). Cytological studies in some flowering plants from Southern France. Acta Bot. Neerl. 20, 157–66.Google Scholar
  65. Verlaque, R. (1984) Etude biosystématique et phylogénétique des Dipsacaceae I. Rev. Gén. Bot. 91, 81–121.Google Scholar
  66. Verlaque, R. and Contandriopoulos, J. (1990) Analyse des variations chromosomiques en région méditerranéenne: polyploïdie, différenciation et adaptation. Ecol. Med. 16, 93–112.Google Scholar
  67. Verlaque, R. and Filosa, D. (1993) Mediterranean chromosome reports 3. Flora Medit. 3, 364–7.Google Scholar
  68. Verlaque, R., Seidenbinder, M. and Danadille, P. (1987a) Recherches cytotaxonomiques sur la spéciation en région Mediterranéenne I: espèces à nombre chromosomique stable. Rev. Biol.-Ecol. médit. 10, 273–89.Google Scholar
  69. Verlaque, R., Vignal, C. and Seidenbinder, M. (1987b) Recherches cytotaxonomiques sur la spéciation en région méditerranéenne II: espéces dysploïdes. Rev. Biol.-Ecol. médit. 10, 291–313.Google Scholar
  70. Verlaque, R., Seidenbinder, M. and Reynaud, C. (1987c) Recherches cytotaxonomiques sur la spéciation en région méditerranéenne. III: espèces aneuploïdes. Rev. Biol.-Ecol. médit. 10, 315–46.Google Scholar
  71. Verlaque, R., Reynaud, C. and Vignal, C. (1995) Mediterranean chromosome reports 5. Flora medit. 5 (in press).Google Scholar
  72. Ward, J.H. (1963) Hierarchical grouping to optimize an objective function. J. Am. Stat. Ass. 58, 236–44.Google Scholar
  73. Whitney, G.G. and Foster, D.R. (1988) Overstorey composition and age as determinants of the understorey flora of woods of central New England. J. Ecol. 76, 867–76.Google Scholar
  74. Whittaker, R.J. (1991) Small-scale pattern: an evolution of techniques with an application to salt marsh vegetation. Vegetatio 94, 81–94.Google Scholar
  75. Wiggins, I.L. and Porter, D.M. (1971) Flora of the Galapagos Island. Standford: Standford University Press.Google Scholar
  76. Williams, K., Hobbs, R.J. and Hamburg, S.P. (1987) Invasion of an annual grassland in Northern California by Baccharis pilularis subsp., consanguinea. Oecologia 72, 461–5.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Roselyne Lumaret
    • 1
  • Jean-Louis Guillerm
    • 1
  • Jacques Maillet
    • 2
  • Regine Verlaque
    • 3
  1. 1.Department of Population Biology, Centre d'Ecologie Fonctionnelle et Evolutive Louis EmbergerCentre National de la Recherche ScientifiqueMontpellier cedexFrance
  2. 2.Laboratory of Biology, Ecology and Plant PathologyEcole Nationale Supe´rieure AgronomiqueMontpellier cedexFrance
  3. 3.Laboratory of Biosystematics and Mediterranean EcologyUniversite´ de ProvenceMarseille cedex 3France

Personalised recommendations