Advertisement

Biodiversity & Conservation

, Volume 6, Issue 11, pp 1557–1570 | Cite as

Biodiversity and historical biogeography of stalked crinoids (Echinodermata) in the deep sea

  • Nadia Ameziane
  • Michel Roux
Article

Abstract

About 95 species of stalked crinoids are now described from 60m to hadal depths, but our knowledge remains far from complete. Depending on which species concept is used, estimates of species richness can be dramatically different. It is necessary to have a homogeneous concept for taxonomic units. The abundance of the crinoid fossil record allows a discussion of the ancestry of deep sea crinoid fauna. Stalked crinoids have a horizontal diversity pattern with three regional centres of high diversity (i.e. western tropical Pacific, western tropical Atlantic and north-eastern Atlantic). Vertical patterns show two faunal strata which vary in importance among provinces. The epibathyal stratum has apparently remained relatively similar in intertropical areas since the Mesozoic. Despite environmental changes related to glaciation since the Middle Miocene, the deepest crinoid fauna (i.e. the deep sea fauna sensu stricto at depths more than 1000 ± 200 m) have a very ancient origin with a dispersion closely related to plate tectonics. The bathyal fauna on hard substrates includes a few living fossils and has a high historical interest.

biodiversity biogeography deep sea fauna Echinodermata stalked crinoids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Améziane-Cominardi, N. (1991) Distribution bathymétrique des Pentacrines du Pacifique occidental. Essai de modélisation et d'application aux faunes du Lias. Documents du Laboratoire de géologie, Université de Lyon, 116. pp.Google Scholar
  2. Améziane-Cominardi, N. and Roux, M. (1994) Ontogenèse de la structure en mosaïque du squelette des crinoïdes pédonculés actuels. Conséquences pour la biologie évolutive et la taxonomie. In Echinoderms through Time (Balkema, ed.) pp. 185–190.Google Scholar
  3. Bourseau, J.P., Cominardi, N. and Roux, M. (1988) La zonation bathymétrique des Crinoïdes pédonculés actuels: un modèle de référence pour les reconstitutions paléobathymétriques. Géologie Méditerranéenne 15(1), 83–9.Google Scholar
  4. Bourseau, J.P., Améziane-Cominardi, N., Avocat, R. and Roux, M. (1991) Echinodermata: Les crinoïdes pédonculés de Nouvelle-Calédonie. Mémoires du Museum national d'Histoire naturelle, A, 151, 229–333.Google Scholar
  5. Carpenter, P.H. (1885) Report upon the Crinoidea collected during the voyage of H.M.S. Challenger during the years 1873–1876. Part I — General morphology of the stalked crinoids. Report of the Scientific Results of the Exploring Voyage H.M.S. Challenger, London, Zoology, 11(32), 1–442.Google Scholar
  6. Clark, A.H. (1912) The crinoids of the Indian Ocean. Echinodermata of the Indian Museum, Calcutta, part 7, Crinoidea, 252–279.Google Scholar
  7. Clark, A.H. (1915) A monograph of the existing Crinoids. Bulletin of the U.S. national Museum. 82(1), 1–406.Google Scholar
  8. Clark, A.H. (1923) The danish Ingolf-expedition — Crinoidea. Copenhague: Bianco Luno, 4(5), 1–60.Google Scholar
  9. Clark, A.H. (1923) A revision of the recent representatives of the crinoid family Pentacrinidae, with the description of two new genera. Journal of the Washington Academy of Sciences, Zoology, 13(1), 8–12.Google Scholar
  10. Clark, A.H. (1973) Some new taxa of recent stalked crinoidea. Bulletin of the British Museum (national History), Zoology. 25, 267–288.Google Scholar
  11. Conan, G., Roux, M. and Sibuet, M. (1981) A photographic survey of a population of the stalked crinoid Diplocrinus (Annacrinus) wyvillethomsoni (Echinodermata) from the bathyal slope of the Bay of Biscay. Deep Sea Research. 28a, 441–53.Google Scholar
  12. Döderlein, L. (1907) Die gestielten Crinoiden der Siboga-Expedition: Siboga Expedite. Uitkomsten op Zoologisch, Botanisch, Oceanographisch Oost-Indie (1899–1900). Leiden, 42a, 1–54.Google Scholar
  13. Döderlein, L. (1912) Die gestielten Crinoiden der deutshen Tiefsee-Expedition. Wiss. Ergebnisse deutsche Tiefse-exped. Valdivia 1898–1899. (Fischer, G. ed), Iena, 17(1), 1–34.Google Scholar
  14. Gage, J.D. and Tyler, P.A. (1991) Deep-sea biology. A natural history of organisms at the deep-sea floor. Cambridge University Press.Google Scholar
  15. Gislen, T. (1924) Echinoderm studies. Zoologische Bidragen Uppsala. 9, 1–316.Google Scholar
  16. Gislen, T. (1938) A revision of the recent Bathycrinidae. Lunds Universitets Arsskrift, N.F., 34(10), 2–30.Google Scholar
  17. Gislen, T. (1939) On the young of a stalked deep-sea crinoid and the affinities of the Hyocrinidae. Lunds Universitets Arsskrift, N.F., 34(17), 1–18.Google Scholar
  18. Guettard, J.E. (1761) Mémoire sur les encrinites et les pierres étoilées dans lequel on traitera aussi des Entroques. Mémoire de l'Académie royale des Sciences, Paris 1755, 224–63, 318–54.Google Scholar
  19. Guille, A. (1980) Les ophiures des marges continentales de la région Philippines-Indonésie. Distribution bathymétrique et étagement. In Echinoderms: Present and Past (A.A. Balkema, ed.) pp. 97–105.Google Scholar
  20. Hansen, B. (1975) Systematics and biology of the deep-sea holothurians. Galathea Report 13, 1–262.Google Scholar
  21. Hénin, C., Gallois, F. and Langlade, M.J. (1994) Masses d'eau et courants observés autour de la Nouvelle-Calédonie durant les croisières ZoNéCo 1993 et 1994. SOPAC, Sea floor Mapping Workshop: Results and applications. Lifou-Nouméa, 4–9 Novembre 1994: abstract and poster.Google Scholar
  22. Hughen, K.A., Overpeck, J.T., Peterson, L.C. and Trumbore, S. (1996) Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, 51–4.Google Scholar
  23. Madsen, F.J. (1961) On the zoogeography and origin of the abyssal fauna. Galathea Report 4, 177–218.Google Scholar
  24. May, R.M. and Nee, S. (1995) The species alias problem. Nature 378, 447–8.Google Scholar
  25. Mayr, E. (1982) The growth of biological thought. Diversity, Evolution and Inheritance. Harvard University Press.Google Scholar
  26. Meyer, D.L. and Macurda, D.B. (1977) Adaptive radiation of the comatulid crinoids. Paleobiol. 3, 74–82.Google Scholar
  27. Moore, R.C. and Teichert, C. (1978) Treatise on Invertebrate Paleontology, University of Kansas, part T, Echinodermata 2, 1.Google Scholar
  28. Rasmussen, H.W. (1961) A monograph on Cretaceous Crinoidea. K. Danske Vidensk. Selsk., Biol. Skrifter, 12(1), 1–428.Google Scholar
  29. Rasmussen, H.W. (1972) Lower tertiary Crinoidea, Asteroidea and Ophiuroidea from Northern Europe and Greenland. K. Danske Vidensk. Selsk., Biol. Skrifter, 19, 1–83.Google Scholar
  30. Rodgers A.D. (1994) The biology of seamounts. Adv. Mar. Biol, 30, 305–350.Google Scholar
  31. Roux, M. (1976) Aspects de la variabilité et de la croissance au sein d'une population de la Pentacrine actuelle: Annacrinus wyvillethomsoni Jeffreys (Crinoidea). Thallasia Yugoslavica, 12(1), 307–20.Google Scholar
  32. Roux, M. (1980) Les articulations de pédoncule des Hyocrinidae (Echinodermes, Crinoïdes pédonculés): Intérêt systématique et conséquences. Bulletin du Muséum national d'Histoire Naturelle, Paris, 4 série 2, 31–57.Google Scholar
  33. Roux, M. (1981) Echinodermes: Crinoïdes Isocrinidae. Mémoires ORSTOM 91, 477–543.Google Scholar
  34. Roux, M. (1982) De la biogéographie historique des océans aux reconstitutions paléobiogéographiques: tendances et problèmes illustrés par des exemples pris chez les Echinodermes bathyaux et abyssaux. Bulletin de la Société géologique de France, série 7, 24, 907–16.Google Scholar
  35. Roux, M. (1985) Les crinoïdes pédonculés (Echinodermes) de l'Atlantique N.E.: Inventaire, écologie et biogéographie. In Peuplements profonds du golfe de de Gascogne (Laubier, L, and Monniot, C., eds), Ifremer. 41, 479–489.Google Scholar
  36. Roux, M. (1987) Evolutionary ecology and biogeography of recent stalked crinoids as a model for the fossil record. In Echinoderm Studies (A.A. Balkema, ed.) 2, 1–53.Google Scholar
  37. Roux, M. (1994) The CALSUB cruise on the bathyal slopes off New Caledonia. Mémoires du Museum national d'Histoire naturelle 161, 9–47.Google Scholar
  38. Roux, M., Bourseau, J.P., Bas, T., Dumont, T., de Graciansky, P.C., Lemoine, M. and Rudkiewicz, J.L. (1988) Bathymetric evolution of the Tethyan margin in the western Alps (data from stalked crinoids): a reapprisal of eustatism problems during the Jurassic. Bulletin de la Société géologique de France, série 8, 3, 633–41.Google Scholar
  39. Rowe, F.W.E., Hoggett, A.K., Birtles, R.A. and Vail, L.L. (1986) Revision of some comasterid genera from Australia (Echinodermata: Crinoidea), with descriptions of two genera and nine species. Zool. J. Linn. Soc. 86, 197–277.Google Scholar
  40. Stehli, F.G. and Wells J.W. (1971) Diversity and age pattern in hermatrypic corals. Syst. Zool. 20, 115–126.Google Scholar
  41. Tunnicliffe, V. and Fowler, C.M.R. (1996) Influence of sea-floor spreading on the global hydrothermal vent fauna. Nature 379, 531–3.Google Scholar
  42. Wilson, R.R. and Kaufmann, R.S. (1987) Seamount biota and biogeography. In Seamount, Islands and Atolls (B. Keating, P. Fryer, R. Batiza and G. Boehlert, eds) pp. 355–77. Geophysical Monograph 43, American Geophysical Union.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Nadia Ameziane
    • 1
  • Michel Roux
    • 2
  1. 1.Laboratoire de Biologie des Inverte´bre´s marinsMuseum national d'Histoire naturelleParis, and URA 699 du CNRSFrance
  2. 2.Laboratoire des Sciences de la Terre, E.A. 2062Universite´ de ReimsReimsFrance

Personalised recommendations