Water, Air, and Soil Pollution

, Volume 100, Issue 1–2, pp 99–106 | Cite as

Microbial Reduction of Iodate

  • Terry B. Councell
  • Edward R. Landa
  • Derek R. Lovley

Abstract

The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. Although a major microbial role has been suggested in the past to account for these redox changes, little has been done to elucidate the responsible microorganisms or the mechanisms involved. In the work presented here, direct microbial reduction of iodate was demonstrated with anaerobic cell suspensions of the sulfate reducing bacterium Desulfovibrio desulfuricans which reduced 96% of an initial 100 µM iodate to iodide at pH 7 in 30 mM NaHCO3 buffer, whereas anaerobic cell suspensions of the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens were unable to reduce iodate in 30 mM NaHCO3 buffer (pH 7). Both D. desulfuricans and S. putrefaciens were able to reduce iodate at pH 7 in 10 mM HEPES buffer. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments. These microbially mediated reactions may be important factors in the fate and transport of129 I in natural systems.

129iodate iodide microbial reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behrens, H.: 1982, Environmental Migration of Long-Lived Radionuclides, Conference Proceedings, July 27- 31, 1981, Knoxville, IAEA-SM- 257/36, International Atomic Energy Agency, Vienna, p. 24–30.Google Scholar
  2. Brock, T. D. and O'Dea, K.: 1977, Appl. Environ. Microbiol. 22, 254.Google Scholar
  3. Chapman, N. A. and McKinley, I. G.: 1987, The Geological Disposal of Nuclear Waste, John Wiley & Sons, p. 280.Google Scholar
  4. Christiansen, J. V. and Carlsen, L.: 1989, Riso National Laboratory, Denmark. Riso-M 2791, p. 41.Google Scholar
  5. Coleman, M. L., Hedrick, D. B., Lovley, D. R., White, D. C. and Pye, K.: 1993, Nature 361, 436.Google Scholar
  6. Couture, R. A. and Seitz, M. G.: 1983, Nucl. Chem. Waste Manage. 4, 301.Google Scholar
  7. Eisenbud, M.: 1987, Environmental Radioactivity (3rd ed.), Academic Press, p. 270.Google Scholar
  8. Erdal, B. R.: 1985, Workshop on Fundamental Geochemistry Needs for Nuclear Waste Isolation U.S. Department of Energy. CONF8406134.Google Scholar
  9. Francois, R.: 1987, Geochim. et Cosmochim. Acta 51, 2417.Google Scholar
  10. Gozlan, R. S. and Margalith, P.: 1973, J. Appl. Bact. 36, 407.Google Scholar
  11. Gozlan, R. S. and Margalith, P.: 1974, J. Appl. Bact. 37, 493.Google Scholar
  12. Ginkel, C. G., Plugge, C. M. and Stroo, C. A.: 1995, Chemosphere 31, 4057.Google Scholar
  13. Hackett, I. J.: 1971, The Reduction of Iodate by Marine Bacteria, University of Wales, United Kingdom, M. Sc. dissertation.Google Scholar
  14. Higgo, J. J.W., Haign, D. G., Allen, M. R., Warwick, P. and Williams, G.M.: 1990, British Geological Survey, Technical Report WE/89/44, p. 33.Google Scholar
  15. Hijnen, W. A. M., Voogt, R., Veendendaal, H. R., Van Der Jagt, H. and Van Der Kooij, D.: 1995, Appl. Environ. Microbiol. 61, 239.Google Scholar
  16. Krieg, N. R. and Holt, J. G.: 1984, Bergey's Manual of Systematic Bacteriology, Volume 1, Williams and Wilkins, p. 694.Google Scholar
  17. Liu, Y. and von Gunten, H. R.: 1988, Paul Scherrer Institute. Bericht Nr. 16, p. 183.Google Scholar
  18. Lovley, D. R.: 1994, Adv. Agronomy 54, 175.Google Scholar
  19. Lovley, D. R., Roden, E., Phillips, E. J. P. and Woodward, J. C.: 1993, Marine Geol. 113, 41.Google Scholar
  20. Lovley, D. R. and Phillips, E. J. P.: 1992, Appl. Environ. Microbiol. 58, 850.PubMedGoogle Scholar
  21. Lovley, D. R.: 1991, Microbiol. Reviews 55, 259.Google Scholar
  22. Lovley, D. R., Phillips, E. J. P. and Longeran D. J.: 1989, Appl. Environ. Microbiol. 55, 700.Google Scholar
  23. Lowry, O. H., Rosebrough, N. L., Farr, A. L. and Randall, R. J.: 1951, J. Biol. Chem. 193, 265.PubMedGoogle Scholar
  24. Luther, G. W. and Cole, H.: 1988, Marine Chem. 24, 315.Google Scholar
  25. Mackin, J. E., Allure, R. C. and Pullman, W. J.: 1988, Cont. Shelf Res. 8, 363.Google Scholar
  26. Malmqvist, A., Welder, T. and Gunnarson, L.: 1991, Appl. Environ. Microbiol. 57, 2229.Google Scholar
  27. Muramatsu, Y., Uchida, S. and Ohmomo, Y.: 1990, J. Radioanal. Nucl. Chem. 138, 377.Google Scholar
  28. Neal, C. and Truesdale, V. W.: 1976, J. Hydrology. 31, 281.Google Scholar
  29. Phillips, E. J. P., Lovley, D. R. and Landa, E. R.: 1995, J. Industr. Microbiol. 14, 203.Google Scholar
  30. Skimer, B. J., Red, R. C. and Grimaldi, F. S.: 1964, American Mineral. 49, 543.Google Scholar
  31. Ticknor, K. V. and Cho, Y. H.: 1990, J. Radioanal. Nucl. Chem. 140, 75.Google Scholar
  32. Truesdale, V. and Spencer, C. P.: 1974, Marine Chem. 2, 22.Google Scholar
  33. Tsunogai, S. and Sase, T.: 1969, Deep-Sea Res. 16, 489.Google Scholar
  34. Ullman, W. J. and Allure, R. C.: 1985, Geochim. et Cosmochim. Acta 49, 967.Google Scholar
  35. Wong, G. T. and Brewer, P. G.: 1977, Geochim. et Cosmochim. Acta 41, 151.Google Scholar
  36. Zhang, J.-Z. and Whitefield, M.: 1986, Marine Chem. 19, 121.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Terry B. Councell
    • 1
  • Edward R. Landa
    • 1
  • Derek R. Lovley
    • 2
  1. 1.U.S. Geological Survey430 National CenterReston
  2. 2.Department of MicrobiologyUniversity of MassachusettsAmherst

Personalised recommendations