Biotechnology Letters

, Volume 19, Issue 6, pp 499–501 | Cite as

Ethanol stimulates the flocculation of Zymomonas mobilis

  • M.A.P.F. Palha
  • C.E. Lopes
  • N. PereiraJr.


When flocculating cells of Zymomonas mobilis were put in contact with increasing concentrations of ethanol, flocculation was intensified. The settling velocity increased 5.3-fold when the ethanol concentration rose from 0 to 12% v/v. Additionally, the percentage of free-cells diminished considerably (from 33 to 10%), denoting an increase on the extent of flocculation. The stress provoked by ethanol possibly leads to the activation of genes responsible for aggregation.


Organic Chemistry Settling Bioorganic Chemistry Flocculation Ethanol Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beker, M.J.; Shvinka, J.E.; Pankova, L.M.; Laivenierks, M.G. and Mezhbarde, I.N. (1990). Appl. Biochem. Biotech., 24, 265-274.Google Scholar
  2. Bossier, P. and Verstraete, W. (1996). Appl. Microbiol. Biotechnol., 45, 1-6.Google Scholar
  3. Bu'Lock, J.D.; Comberbach, D.M. and Ghommidh, C. (1984). Chem. Eng. Journal, 29, B9-B24.Google Scholar
  4. Coe, H.S. and Clevenger, G.H. (1916). Trans. AIME, 55, 356-384.Google Scholar
  5. Esser, K. and Kües, U. (1983). Proc. Biochem., December, pp. 21-23.Google Scholar
  6. Fein, J.E.; Lawford, H.G.; Lawford, G.R.; Zawadzki, B.C. and Charley, R.C. (1983). Biotech. Lett., 5, 19-24.Google Scholar
  7. Fitch, E.B. (1966). Ind. Eng. Chem., 58, 18.Google Scholar
  8. Hughes, J.; Ramsden, D.K. and Boulby, J.M. (1994). Biotech., Tech., 8, 541-546.Google Scholar
  9. Jones, G.W. (1984). In Microbial Adhesion and Aggregation. ed. K.C. Marshall, Springer-Verlag, pp. 71-84.Google Scholar
  10. Kirk, L.A.; Webb, R.I. and Doelle, H.W. (1994). World J. Microb. Biotechnol., 10, 481-482.Google Scholar
  11. Kjelleberg, S. (1984). In Microbial Adhesion and Aggregation. ed. K.C. Marshall. Springer-Verlag, 51-70.Google Scholar
  12. Kuriyama, K.; Seiko, Y.; Murakami, T.; Kobayashi, H. and Sonoda, Y. (1985). J. Ferment. Technol., 63, 159-165.Google Scholar
  13. Lopes, C.E.; Calazans, G.M.T. and Rios, E.M. (1991). Biotech. Lett., 13, 43-46.Google Scholar
  14. Lopez, J.A.; Calazans, G.M.T.; Silveira, M.M.; Jonas, R. and Lopes, C.E. (1996). Accepted for publication in Journal of Bioseparations.Google Scholar
  15. Morais, J.O.F.; Rios, E.M.M.M.; Calazans, G.M.T. and Lopes, C.E. (1993). J. Biotechnol., 31, 75-91.PubMedGoogle Scholar
  16. Oliveira, E.G.; Morais, J.O. and Pereira Jr., N. (1992). Biotech. Lett., 14, 1081-1084.Google Scholar
  17. Pereira Jr., N. and Bu'Lock, J.D. (1993). J. Brazilian Soc. Microbiol., 24, 132-139.Google Scholar
  18. Rogers, P.L.; Lee, K.J.; Skotnicki, M.L. and Tribe, D.E. (1982). Adv. Biochem. Eng., 23, 37-84.Google Scholar
  19. Rehr, B.; Wilhelm, C. and Sahm, H. (1991). Appl. Microbiol. Biotechnol. 35,144-148.Google Scholar
  20. Robb, I.D. (1984). In Microbial Adhesion and Aggregation. ed. K.C. Marshall, Springer-Verlag, pp. 39-49.Google Scholar
  21. Viikari, L. (1988). CRC Crit. Rev. Biotech., 7, 237-261.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • M.A.P.F. Palha
    • 1
  • C.E. Lopes
    • 2
  • N. PereiraJr.
    • 3
  1. 1.Departamento de Engenharia QuímicaUniversidade Federal de Pernambuco, Cidade UniversitariaRecife PEBrazil
  2. 2.Departamento de AntibióticosUniversidade Federal de PernambucoPernambucoBrazil
  3. 3.Departamento de Engenharia BioquímicaUniversidade Federal do Rio de JaneiroJaneiroBrazil

Personalised recommendations